/* LibTomCrypt, modular cryptographic library -- Tom St Denis * * LibTomCrypt is a library that provides various cryptographic * algorithms in a highly modular and flexible manner. * * The library is free for all purposes without any express * gurantee it works. * * Tom St Denis, tomstdenis@iahu.ca, http://libtomcrypt.org */ #include "mycrypt.h" #ifdef MDSA int dsa_make_key(prng_state *prng, int wprng, int group_size, int modulus_size, dsa_key *key) { mp_int tmp, tmp2; int err, res; unsigned char buf[512]; _ARGCHK(prng != NULL); _ARGCHK(key != NULL); /* check prng */ if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } /* check size */ if (group_size >= 1024 || group_size <= 15 || group_size >= modulus_size || (modulus_size - group_size) >= (int)sizeof(buf)) { return CRYPT_INVALID_ARG; } /* init mp_ints */ if ((err = mp_init_multi(&tmp, &tmp2, &key->g, &key->q, &key->p, &key->x, &key->y, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* make our prime q */ if ((err = rand_prime(&key->q, group_size, prng, wprng)) != CRYPT_OK) { goto error2; } /* double q */ if ((err = mp_mul_2(&key->q, &tmp)) != MP_OKAY) { goto error; } /* now make a random string and multply it against q */ if (prng_descriptor[wprng].read(buf, modulus_size - group_size, prng) != (unsigned long)(modulus_size - group_size)) { err = CRYPT_ERROR_READPRNG; goto error2; } /* force magnitude */ buf[0] |= 0x80; /* force even */ buf[modulus_size - group_size - 1] &= ~1; if ((err = mp_read_unsigned_bin(&tmp2, buf, modulus_size - group_size)) != MP_OKAY) { goto error; } if ((err = mp_mul(&key->q, &tmp2, &key->p)) != MP_OKAY) { goto error; } if ((err = mp_add_d(&key->p, 1, &key->p)) != MP_OKAY) { goto error; } /* now loop until p is prime */ for (;;) { if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { goto error2; } if (res == MP_YES) break; /* add 2q to p and 2 to tmp2 */ if ((err = mp_add(&tmp, &key->p, &key->p)) != MP_OKAY) { goto error; } if ((err = mp_add_d(&tmp2, 2, &tmp2)) != MP_OKAY) { goto error; } } /* now p = (q * tmp2) + 1 is prime, find a value g for which g^tmp2 != 1 */ mp_set(&key->g, 1); do { if ((err = mp_add_d(&key->g, 1, &key->g)) != MP_OKAY) { goto error; } if ((err = mp_exptmod(&key->g, &tmp2, &key->p, &tmp)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&tmp, 1) == MP_EQ); /* at this point tmp generates a group of order q mod p */ mp_exch(&tmp, &key->g); /* so now we have our DH structure, generator g, order q, modulus p Now we need a random exponent [mod q] and it's power g^x mod p */ do { if (prng_descriptor[wprng].read(buf, group_size, prng) != (unsigned long)group_size) { err = CRYPT_ERROR_READPRNG; goto error2; } if ((err = mp_read_unsigned_bin(&key->x, buf, group_size)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&key->x, 1) != MP_GT); if ((err = mp_exptmod(&key->g, &key->x, &key->p, &key->y)) != MP_OKAY) { goto error; } key->type = PK_PRIVATE; key->qord = group_size; /* shrink the ram required */ if ((err = mp_shrink(&key->g)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->p)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->q)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->x)) != MP_OKAY) { goto error; } if ((err = mp_shrink(&key->y)) != MP_OKAY) { goto error; } err = CRYPT_OK; #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif goto done; error : err = mpi_to_ltc_error(err); error2: mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL); done : mp_clear_multi(&tmp, &tmp2, NULL); return err; } void dsa_free(dsa_key *key) { _ARGCHK(key != NULL); mp_clear_multi(&key->g, &key->q, &key->p, &key->x, &key->y, NULL); } int dsa_sign_hash(const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen, prng_state *prng, int wprng, dsa_key *key) { mp_int k, kinv, tmp, r, s; unsigned char buf[512]; int err, y; unsigned long len; _ARGCHK(in != NULL); _ARGCHK(out != NULL); _ARGCHK(prng != NULL); _ARGCHK(outlen != NULL); _ARGCHK(key != NULL); if ((err = prng_is_valid(wprng)) != CRYPT_OK) { return err; } if (key->type != PK_PRIVATE) { return CRYPT_PK_NOT_PRIVATE; } /* check group order size */ if (key->qord >= (int)sizeof(buf)) { return CRYPT_INVALID_ARG; } /* Init our temps */ if ((err = mp_init_multi(&k, &kinv, &r, &s, &tmp, NULL)) != MP_OKAY) { goto error; } retry: do { /* gen random k */ if (prng_descriptor[wprng].read(buf, key->qord, prng) != (unsigned long)key->qord) { err = CRYPT_ERROR_READPRNG; goto done; } /* read k */ if ((err = mp_read_unsigned_bin(&k, buf, key->qord)) != MP_OKAY) { goto error; } /* k > 1 ? */ if (mp_cmp_d(&k, 1) != MP_GT) { goto retry; } /* test gcd */ if ((err = mp_gcd(&k, &key->q, &tmp)) != MP_OKAY) { goto error; } } while (mp_cmp_d(&tmp, 1) != MP_EQ); /* now find 1/k mod q */ if ((err = mp_invmod(&k, &key->q, &kinv)) != MP_OKAY) { goto error; } /* now find r = g^k mod p mod q */ if ((err = mp_exptmod(&key->g, &k, &key->p, &r)) != MP_OKAY) { goto error; } if ((err = mp_mod(&r, &key->q, &r)) != MP_OKAY) { goto error; } if (mp_iszero(&r) == MP_YES) { goto retry; } /* now find s = (in + xr)/k mod q */ if ((err = mp_read_unsigned_bin(&tmp, (unsigned char *)in, inlen)) != MP_OKAY) { goto error; } if ((err = mp_mul(&key->x, &r, &s)) != MP_OKAY) { goto error; } if ((err = mp_add(&s, &tmp, &s)) != MP_OKAY) { goto error; } if ((err = mp_mulmod(&s, &kinv, &key->q, &s)) != MP_OKAY) { goto error; } if (mp_iszero(&s) == MP_YES) { goto retry; } /* now store em both */ /* first check that we have enough room */ if (*outlen < (unsigned long)(PACKET_SIZE + 4 + mp_unsigned_bin_size(&s) + mp_unsigned_bin_size(&r))) { err = CRYPT_BUFFER_OVERFLOW; goto done; } /* packet header */ packet_store_header(out, PACKET_SECT_DSA, PACKET_SUB_SIGNED); y = PACKET_SIZE; /* store length of r */ len = mp_unsigned_bin_size(&r); out[y++] = (len>>8)&255; out[y++] = (len & 255); /* store r */ if ((err = mp_to_unsigned_bin(&r, out+y)) != MP_OKAY) { goto error; } y += len; /* store length of s */ len = mp_unsigned_bin_size(&s); out[y++] = (len>>8)&255; out[y++] = (len & 255); /* store s */ if ((err = mp_to_unsigned_bin(&s, out+y)) != MP_OKAY) { goto error; } y += len; /* reset size */ *outlen = y; err = CRYPT_OK; goto done; error : err = mpi_to_ltc_error(err); done : mp_clear_multi(&k, &kinv, &r, &s, &tmp, NULL); #ifdef CLEAN_STACK zeromem(buf, sizeof(buf)); #endif return err; } int dsa_verify_hash(const unsigned char *sig, unsigned long siglen, const unsigned char *hash, unsigned long inlen, int *stat, dsa_key *key) { mp_int r, s, w, v, u1, u2; unsigned long x, y; int err; _ARGCHK(sig != NULL); _ARGCHK(hash != NULL); _ARGCHK(stat != NULL); _ARGCHK(key != NULL); /* default to invalid signature */ *stat = 0; if (siglen < PACKET_SIZE+2+2) { return CRYPT_INVALID_PACKET; } /* is the message format correct? */ if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_DSA, PACKET_SUB_SIGNED)) != CRYPT_OK) { return err; } /* skip over header */ y = PACKET_SIZE; /* init our variables */ if ((err = mp_init_multi(&r, &s, &w, &v, &u1, &u2, NULL)) != MP_OKAY) { return mpi_to_ltc_error(err); } /* read in r followed by s */ x = ((unsigned)sig[y]<<8)|((unsigned)sig[y+1]); y += 2; if (y + x > siglen) { err = CRYPT_INVALID_PACKET; goto done; } if ((err = mp_read_unsigned_bin(&r, (unsigned char *)sig+y, x)) != MP_OKAY) { goto error; } y += x; /* load s */ x = ((unsigned)sig[y]<<8)|((unsigned)sig[y+1]); y += 2; if (y + x > siglen) { err = CRYPT_INVALID_PACKET; goto done; } if ((err = mp_read_unsigned_bin(&s, (unsigned char *)sig+y, x)) != MP_OKAY) { goto error; } /* w = 1/s mod q */ if ((err = mp_invmod(&s, &key->q, &w)) != MP_OKAY) { goto error; } /* u1 = m * w mod q */ if ((err = mp_read_unsigned_bin(&u1, (unsigned char *)hash, inlen)) != MP_OKAY) { goto error; } if ((err = mp_mulmod(&u1, &w, &key->q, &u1)) != MP_OKAY) { goto error; } /* u2 = r*w mod q */ if ((err = mp_mulmod(&r, &w, &key->q, &u2)) != MP_OKAY) { goto error; } /* v = g^u1 * y^u2 mod p mod q */ if ((err = mp_exptmod(&key->g, &u1, &key->p, &u1)) != MP_OKAY) { goto error; } if ((err = mp_exptmod(&key->y, &u2, &key->p, &u2)) != MP_OKAY) { goto error; } if ((err = mp_mulmod(&u1, &u2, &key->p, &v)) != MP_OKAY) { goto error; } if ((err = mp_mod(&v, &key->q, &v)) != MP_OKAY) { goto error; } /* if r = v then we're set */ if (mp_cmp(&r, &v) == MP_EQ) { *stat = 1; } err = CRYPT_OK; goto done; error : err = mpi_to_ltc_error(err); done : mp_clear_multi(&r, &s, &w, &v, &u1, &u2, NULL); return err; } int dsa_export(unsigned char *out, unsigned long *outlen, int type, dsa_key *key) { unsigned long y, z; int err; _ARGCHK(out != NULL); _ARGCHK(outlen != NULL); _ARGCHK(key != NULL); if (type == PK_PRIVATE && key->type != PK_PRIVATE) { return CRYPT_PK_TYPE_MISMATCH; } if (type != PK_PUBLIC && type != PK_PRIVATE) { return CRYPT_INVALID_ARG; } /* can we store the static header? */ if (*outlen < (PACKET_SIZE + 1 + 2)) { return CRYPT_BUFFER_OVERFLOW; } /* store header */ packet_store_header(out, PACKET_SECT_DSA, PACKET_SUB_KEY); y = PACKET_SIZE; /* store g, p, q, qord */ out[y++] = type; out[y++] = (key->qord>>8)&255; out[y++] = key->qord & 255; OUTPUT_BIGNUM(&key->g,out,y,z); OUTPUT_BIGNUM(&key->p,out,y,z); OUTPUT_BIGNUM(&key->q,out,y,z); /* public exponent */ OUTPUT_BIGNUM(&key->y,out,y,z); if (type == PK_PRIVATE) { OUTPUT_BIGNUM(&key->x,out,y,z); } *outlen = y; return CRYPT_OK; } int dsa_import(const unsigned char *in, unsigned long inlen, dsa_key *key) { unsigned long x, y; int err; _ARGCHK(in != NULL); _ARGCHK(key != NULL); /* check length */ if ((1+2+PACKET_SIZE) > inlen) { return CRYPT_INVALID_PACKET; } /* check type */ if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_DSA, PACKET_SUB_KEY)) != CRYPT_OK) { return err; } y = PACKET_SIZE; /* init key */ if (mp_init_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL) != MP_OKAY) { return CRYPT_MEM; } /* read type/qord */ key->type = in[y++]; key->qord = ((unsigned)in[y]<<8)|((unsigned)in[y+1]); y += 2; /* input publics */ INPUT_BIGNUM(&key->g,in,x,y); INPUT_BIGNUM(&key->p,in,x,y); INPUT_BIGNUM(&key->q,in,x,y); INPUT_BIGNUM(&key->y,in,x,y); if (key->type == PK_PRIVATE) { INPUT_BIGNUM(&key->x,in,x,y); } return CRYPT_OK; error: mp_clear_multi(&key->p, &key->g, &key->q, &key->x, &key->y, NULL); return err; } int dsa_verify_key(dsa_key *key, int *stat) { mp_int tmp, tmp2; int res, err; _ARGCHK(key != NULL); _ARGCHK(stat != NULL); *stat = 0; /* first make sure key->q and key->p are prime */ if ((err = is_prime(&key->q, &res)) != CRYPT_OK) { return err; } if (res == 0) { return CRYPT_OK; } if ((err = is_prime(&key->p, &res)) != CRYPT_OK) { return err; } if (res == 0) { return CRYPT_OK; } /* now make sure that g is not -1, 0 or 1 and <p */ if (mp_cmp_d(&key->g, 0) == MP_EQ || mp_cmp_d(&key->g, 1) == MP_EQ) { return CRYPT_OK; } if ((err = mp_init_multi(&tmp, &tmp2, NULL)) != MP_OKAY) { goto error; } if ((err = mp_sub_d(&key->p, 1, &tmp)) != MP_OKAY) { goto error; } if (mp_cmp(&tmp, &key->g) == MP_EQ || mp_cmp(&key->g, &key->p) != MP_LT) { err = CRYPT_OK; goto done; } /* 1 < y < p-1 */ if (!(mp_cmp_d(&key->y, 1) == MP_GT && mp_cmp(&key->y, &tmp) == MP_LT)) { err = CRYPT_OK; goto done; } /* now we have to make sure that g^q = 1, and that p-1/q gives 0 remainder */ if ((err = mp_div(&tmp, &key->q, &tmp, &tmp2)) != MP_OKAY) { goto error; } if (mp_iszero(&tmp2) != MP_YES) { err = CRYPT_OK; goto done; } if ((err = mp_exptmod(&key->g, &key->q, &key->p, &tmp)) != MP_OKAY) { goto error; } if (mp_cmp_d(&tmp, 1) != MP_EQ) { err = CRYPT_OK; goto done; } /* now we have to make sure that y^q = 1, this makes sure y \in g^x mod p */ if ((err = mp_exptmod(&key->y, &key->q, &key->p, &tmp)) != MP_OKAY) { goto error; } if (mp_cmp_d(&tmp, 1) != MP_EQ) { err = CRYPT_OK; goto done; } /* at this point we are out of tests ;-( */ err = CRYPT_OK; *stat = 1; goto done; error: err = mpi_to_ltc_error(err); done : mp_clear_multi(&tmp, &tmp2, NULL); return err; } #endif