
A Tiny Crypto Library,

LibTomCrypt

Version 0.84

Tom St Denis
Algonquin College

tomstdenis@iahu.ca
http://libtomcrypt.org

Phone: 1-613-836-3160
111 Banning Rd
Kanata, Ontario

K2L 1C3
Canada

June 1, 2003

2

Contents

1 Introduction 5
1.1 What is the LibTomCrypt? . 5

1.1.1 What the library IS for? 5
1.1.2 What the library IS NOT for? 6

1.2 Why did I write it? . 6
1.2.1 Modular . 7

1.3 License . 7
1.4 Patent Disclosure . 8
1.5 Building the library . 8
1.6 Building against the library . 9
1.7 Thanks . 9

2 The Application Programming Interface (API) 11
2.1 Introduction . 11
2.2 Macros . 12
2.3 Functions with Variable Length Output 12
2.4 Functions that need a PRNG . 13
2.5 Functions that use Arrays of Octets 13

3 Symmetric Block Ciphers 15
3.1 Core Functions . 15
3.2 Key Sizes and Number of Rounds 17
3.3 The Cipher Descriptors . 17

3.3.1 Notes . 18
3.4 Symmetric Modes of Operations 20

3.4.1 Background . 20
3.4.2 Choice of Mode . 22
3.4.3 Implementation . 22

4 One-Way Cryptographic Hash Functions 25
4.1 Core Functions . 25
4.2 Hash Descriptors . 26

4.2.1 Notice . 29
4.3 Hash based Message Authenication Codes 29

3

4 CONTENTS

5 Pseudo-Random Number Generators 33
5.1 Core Functions . 33

5.1.1 Remarks . 34
5.1.2 Example . 34

5.2 PRNG Descriptors . 34
5.3 The Secure RNG . 36

5.3.1 The Secure PRNG Interface 37

6 RSA Routines 39
6.1 Background . 39
6.2 Core Functions . 40
6.3 Packet Routines . 40
6.4 Remarks . 42

7 Diffie-Hellman Key Exchange 43
7.1 Background . 43
7.2 Core Functions . 44

7.2.1 Remarks on Usage . 45
7.2.2 Remarks on The Snippet 48

7.3 Other Diffie-Hellman Functions 48
7.4 DH Packet . 48

8 Elliptic Curve Cryptography 51
8.1 Background . 51
8.2 Core Functions . 51
8.3 ECC Packet . 52
8.4 ECC Keysizes . 53

9 Public Keyrings 55
9.1 Introduction . 55
9.2 The Keyring API . 56

10 GF (2w) Math Routines 59

11 Miscellaneous 61
11.1 Base64 Encoding and Decoding 61
11.2 The Multiple Precision Integer Library (MPI) 62

11.2.1 Binary Forms of “mp int” Variables 62
11.2.2 Primality Testing . 63

12 Programming Guidelines 65
12.1 Secure Pseudo Random Number Generators 65
12.2 Preventing Trivial Errors . 65
12.3 Registering Your Algorithms . 66
12.4 Key Sizes . 66

12.4.1 Symmetric Ciphers . 66
12.4.2 Assymetric Ciphers . 66

CONTENTS 5

12.5 Thread Safety . 67

13 Configuring the Library 69
13.1 Introduction . 69
13.2 mycrypt cfg.h . 69
13.3 The Configure Script . 70

6 CONTENTS

Chapter 1

Introduction

1.1 What is the LibTomCrypt?

LibTomCrypt is a portable ANSI C cryptographic library that supports sym-
metric ciphers, one-way hashes, pseudo-random number generators, public key
cryptography (via RSA,DH or ECC/DH) and a plethora of support routines. It
is designed to compile out of the box with the GNU C Compiler (GCC) version
2.95.3 (and higher) and with MSVC version 6 in win32.

The library has been successfully tested on quite a few other platforms rang-
ing from the ARM7TDMI in a Gameboy Advanced to various PowerPC pro-
cessors and even the MIPS processor in the PlayStation 2. Suffice it to say the
code is portable.

The library is designed so new ciphers/hashes/PRNGs can be added at run-
time and the existing API (and helper API functions) will be able to use the
new designs automatically. There exist self-check functions for each cipher and
hash to ensure that they compile and execute to the published design specifi-
cations. The library also performs extensive parameter error checking and will
give verbose error messages when possible.

Essentially the library saves the time of having to implement the ciphers,
hashes, prngs yourself. Typically implementing useful cryptography is an error
prone business which means anything that can save considerable time and effort
is a good thing.

1.1.1 What the library IS for?

The library typically serves as a basis for other protocols and message formats.
For example, it should be possible to take the RSA routines out of this library,
apply the appropriate message padding and get PKCS compliant RSA routines.
Similarly SSL protocols could be formed on top of the low-level symmetric cipher
functions. The goal of this package is to provide these low level core functions
in a robust and easy to use fashion.

7

8 CHAPTER 1. INTRODUCTION

The library also serves well as a toolkit for applications where they don’t need
to be OpenPGP, PKCS, etc. compliant. Included are fully operational public
key routines for encryption, decryption, signature generation and verification.
These routines are fully portable but are not conformant to any known set of
standards. They are all based on established number theory and cryptography.

1.1.2 What the library IS NOT for?

The library is not designed to be in anyway an implementation of the SSL,
PKCS, P1363 or OpenPGP standards. The library is not designed to be com-
pliant with any known form of API or programming hierarchy. It is not a port
of any other library and it is not platform specific (like the MS CSP). So if
you’re looking to drop in some buzzword compliant crypto library this is not
for you. The library has been written from scratch to provide basic functions
as well as non-standard higher level functions.

This is not to say that the library is a “homebrew” project. All of the
symmetric ciphers and one-way hash functions conform to published test vectors.
The public key functions are derived from publicly available material and the
majority of the code has been reviewed by a growing community of developers.

Why not?

You may be asking why I didn’t choose to go all out and support standards
like P1363, PKCS and the whole lot. The reason is quite simple too much
money gets in the way. When I tried to access the P1363 draft documents
and was denied (it requires a password) I realized that they’re just a business
anyways. See what happens is a company will sit down and invent a “standard”.
Then they try to sell it to as many people as they can. All of a sudden this
“standard” is everywhere. Then the standard is updated every so often to keep
people dependent. Then you become RSA. If people are supposed to support
these standards they had better make them more accessible.

1.2 Why did I write it?

You may be wondering, “Tom, why did you write a crypto library. I already
have one.”. Well the reason falls into two categories:

1. I am too lazy to figure out someone else’s API. I’d rather invent my own
simpler API and use that.

2. It was (still is) good coding practice.

The idea is that I am not striving to replace OpenSSL or Crypto++ or
Cryptlib or etc. I’m trying to write my own crypto library and hopefully along
the way others will appreciate the work.

With this library all core functions (ciphers, hashes, prngs) have the exact
same prototype definition. They all load and store data in a format independent

1.3. LICENSE 9

of the platform. This means if you encrypt with Blowfish on a PPC it should
decrypt on an x86 with zero problems. The consistent API also means that if you
learn how to use blowfish with my library you know how to use Safer+ or RC6 or
Serpent or ... as well. With all of the core functions there are central descriptor
tables that can be used to make a program automatically pick between ciphers,
hashes and PRNGs at runtime. That means your application can support all
ciphers/hashes/prngs without changing the source code.

1.2.1 Modular

The LibTomCrypt package has also been written to be very modular. The block
ciphers, one-way hashes and pseudo-random number generators (PRNG) are all
used within the API through “descriptor” tables which are essentially struc-
tures with pointers to functions. While you can still call particular functions
directly (e.g. sha256 process()) this descriptor interface allows the developer to
customize their usage of the library.

For example, consider a hardware platform with a specialized RNG device.
Obviously one would like to tap that for the PRNG needs within the library
(e.g. making a RSA key). All the developer has todo is write a descriptor and
the few support routines required for the device. After that the rest of the API
can make use of it without change. Similiarly imagine a few years down the road
when AES2 (or whatever they call it) is invented. It can be added to the library
and used within applications with zero modifications to the end applications
provided they are written properly.

This flexibility within the library means it can be used with any combination
of primitive algorithms and unlike libraries like OpenSSL is not tied to direct
routines. For instance, in OpenSSL there are CBC block mode routines for
every single cipher. That means every time you add or remove a cipher from the
library you have to update the associated support code as well. In LibTomCrypt
the associated code (chaining modes in this case) are not directly tied to the
ciphers. That is a new cipher can be added to the library by simply providing
the key setup, ECB decrypt and encrypt and test vector routines. After that
all five chaining mode routines can make use of the cipher right away.

1.3 License

All of the source code except for the following files have been written by the
author or donated to the project under the TDCAL license:

1. aes.c

2. rc2.c

3. serpent.c

4. safer.c

10 CHAPTER 1. INTRODUCTION

“aes.c” and “serpent.c” were written by Brian Gladman (gladman@seven77.demon.co.uk).
They are copyrighted works but were both granted unrestricted usage in any
project (commercial or otherwise). “mpi.c” was originally written by Michael
Fromberger (sting@linguist.dartmouth.edu) but has since been replaced with
my LibTomMath library. “rc2.c” is based on publicly available code that is not
attributed to a person from the given source. “safer.c” was written by Richard
De Moliner (demoliner@isi.ee.ethz.ch) and is public domain.

The rest of the code was written either by Tom St Denis or contributed to
the project under the “Tom Doesn’t Care About Licenses” (TDCAL) license.
Essentially this license grants the user unlimited distribution and usage (in-
cluding commercial usage). This means that you can use the package, you can
re-distribute the package and even branch it. I still retain ownership over the
name of the package. If you want to branch the project you can use the code as
a base but you must change the name. The package is also royalty free which
means you can use it in commercial products without compensation towards
the author. I assume no risk from usage of the code nor do I guarantee it works
as desired or stated.

1.4 Patent Disclosure

The author (Tom St Denis) is not a patent lawyer so this section is not to
be treated as legal advice. To the best of the authors knowledge the only
patent related issues within the library are the RC5 and RC6 symmetric block
ciphers. They can be removed from a build by simply commenting out the two
appropriate lines in the makefile script. The rest of the ciphers and hashes are
patent free or under patents that have since expired.

The RC2 and RC4 symmetric ciphers are not under patents but are un-
der trademark regulations. This means you can use the ciphers you just can’t
advertise that you are doing so.

1.5 Building the library

To build the library on a GCC equipped platform simply type “make” at your
command prompt. It will build the library file “libtomcrypt.a”.

To install the library copy all of the “.h” files into your “#include” path and
the single libtomcrypt.a file into your library path.

With MSVC you can build the library with “nmake -f makefile.msvc”. This
will produce a “tomcrypt.lib” file which is the core library. Copy the header files
into your MSVC include path and the library in the lib path (typically under
where VC98 is installed).

1.6. BUILDING AGAINST THE LIBRARY 11

1.6 Building against the library

In the recent versions the build steps have changed. The build options are now
stored in “mycrypt custom.h” and no longer in the makefile. If you change a
build option in that file you must re-build the library from clean to ensure the
build is intact. The perl script “config.pl” will help setup the custom header
and a custom makefile if you want one (the provided “makefile” will work with
custom configs).

1.7 Thanks

I would like to give thanks to the following people (in no particular order) for
helping me develop this project:

1. Richard van de Laarschot

2. Richard Heathfield

3. Ajay K. Agrawal

4. Brian Gladman

5. Svante Seleborg

6. Clay Culver

7. Jason Klapste

8. Dobes Vandermeer

9. Daniel Richards

10. Wayne Scott

11. Andrew Tyler

12. Sky Schulz

13. Christopher Imes

12 CHAPTER 1. INTRODUCTION

Chapter 2

The Application
Programming Interface
(API)

2.1 Introduction

In general the API is very simple to memorize and use. Most of the functions
return either void or int. Functions that return int will return CRYPT OK
if the function was successful or one of the many error codes if it failed. Certain
functions that return int will return −1 to indicate an error. These functions
will be explicitly commented upon. When a function does return a CRYPT
error code it can be translated into a string with

const char *error_to_string(int errno);

An example of handling an error is:

void somefunc(void)
{

int errno;

/* call a cryptographic function */
if ((errno = some_crypto_function(...)) != CRYPT_OK) {

printf("A crypto error occured, %s\n", error_to_string(errno));
/* perform error handling */

}
/* continue on if no error occured */

}

There is no initialization routine for the library and for the most part the
code is thread safe. The only thread related issue is if you use the same sym-

13

14CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

metric cipher, hash or public key state data in multiple threads. Normally that
is not an issue.

To include the prototypes for “LibTomCrypt.a” into your own program sim-
ply include “mycrypt.h” like so:

#include <mycrypt.h>
int main(void) {

return 0;
}

The header file “mycrypt.h” also includes “stdio.h”, “string.h”, “stdlib.h”,
“time.h”, “ctype.h” and “mpi.h” (the bignum library routines).

2.2 Macros

There are a few helper macros to make the coding process a bit easier. The
first set are related to loading and storing 32/64-bit words in little/big endian
format. The macros are:

STORE32L(x, y) unsigned long x, unsigned char *y x→ y[0 . . . 3]

STORE64L(x, y) unsigned long long x, unsigned char *y x→ y[0 . . . 7]

LOAD32L(x, y) unsigned long x, unsigned char *y y[0 . . . 3]→ x

LOAD64L(x, y) unsigned long long x, unsigned char *y y[0 . . . 7]→ x

STORE32H(x, y) unsigned long x, unsigned char *y x→ y[3 . . . 0]

STORE64H(x, y) unsigned long long x, unsigned char *y x→ y[7 . . . 0]

LOAD32H(x, y) unsigned long x, unsigned char *y y[3 . . . 0]→ x

LOAD64H(x, y) unsigned long long x, unsigned char *y y[7 . . . 0]→ x

BSWAP(x) unsigned long x Swaps the byte order of x.

There are 32-bit cyclic rotations as well:

ROL(x, y) unsigned long x, unsigned long y x << y
ROR(x, y) unsigned long x, unsigned long y x >> y

2.3 Functions with Variable Length Output

Certain functions such as (for example) “rsa export()” give an output that is
variable length. To prevent buffer overflows you must pass it the length of the
buffer1 where the output will be stored. For example:

#include <mycrypt.h>

int main(void) {

rsa_key key;

unsigned char buffer[1024];

unsigned long x;

1Extensive error checking is not in place but it will be in future releases so it is a good idea
to follow through with these guidelines.

2.4. FUNCTIONS THAT NEED A PRNG 15

int errno;

/* ... Make up the RSA key somehow */

/* lets export the key, set x to the size of the output buffer */

x = sizeof(buffer);

if ((errno = rsa_export(buffer, &x, PK_PUBLIC, &key)) != CRYPT_OK) {

printf("Export error: %s\n", error_to_string(errno));

return -1;

}

/* if rsa_export() was successful then x will have the size of the output */

printf("RSA exported key takes %d bytes\n", x);

/* ... do something with the buffer */

return 0;

}

In the above example if the size of the RSA public key was more than 1024
bytes this function would not store anything in either “buffer” or “x” and simply
return an error code. If the function suceeds it stores the length of the output
back into “x” so that the calling application will know how many bytes used.

2.4 Functions that need a PRNG

Certain functions such as “rsa make key()” require a PRNG. These functions do
not setup the PRNG themselves so it is the responsibility of the calling function
to initialize the PRNG before calling them.

2.5 Functions that use Arrays of Octets

Most functions require inputs that are arrays of the data type “unsigned char”.
Whether it is a symmetric key, IV for a chaining mode or public key packet it
is assumed that regardless of the actual size of “unsigned char” only the lower
eight bits contain data. For example, if you want to pass a 256 bit key to a
symmetric ciphers setup routine you must pass it in (a pointer to) an array of
32 “unsigned char” variables. Certain routines (such as SAFER+) take special
care to work properly on platforms where an “unsigned char” is not eight bits.

For the purposes of this library the term “byte” will refer to an octet or
eight bit word. Typically an array of type “byte” will be synonymous with an
array of type “unsigned char”.

16CHAPTER 2. THE APPLICATION PROGRAMMING INTERFACE (API)

Chapter 3

Symmetric Block Ciphers

3.1 Core Functions

Libtomcrypt provides several block ciphers all in a plain vanilla ECB block
mode. Its important to first note that you should never use the ECB modes
directly to encrypt data. Instead you should use the ECB functions to make a
chaining mode or use one of the provided chaining modes. All of the ciphers
are written as ECB interfaces since it allows the rest of the API to grow in a
modular fashion.

All ciphers store their scheduled keys in a single data type called “symmet-
ric key”. This allows all ciphers to have the same prototype and store their
keys as naturally as possible. All ciphers provide five visible functions which
are (given that XXX is the name of the cipher):

int XXX_setup(const unsigned char *key, int keylen, int rounds,
symmetric_key *skey);

The XXX setup() routine will setup the cipher to be used with a given
number of rounds and a given key length (in bytes). The number of rounds can
be set to zero to use the default, which is generally a good idea.

If the function returns successfully the variable “skey” will have a scheduled
key stored in it. Its important to note that you should only used this scheduled
key with the intended cipher. For example, if you call “blowfish setup()” do
not pass the scheduled key onto “rc5 ecb encrypt()”. All setup functions do not
allocate memory off the heap so when you are done with a key you can simply
discard it (e.g. they can be on the stack).

To encrypt or decrypt a block in ECB mode there are these two functions:

void XXX_ecb_encrypt(const unsigned char *pt, unsigned char *ct,
symmetric_key *skey);

void XXX_ecb_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_key *skey);

17

18 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

These two functions will encrypt or decrypt (respectively) a single block of text1

and store the result where you want it. It is possible that the input and output
buffer are the same buffer. For the encrypt function “pt”2 is the input and “ct”
is the output. For the decryption function its the opposite. To test a particular
cipher against test vectors3 call:

int XXX_test(void);

This function will return CRYPT OK if the cipher matches the test vectors
from the design publication it is based upon. Finally for each cipher there is a
function which will help find a desired key size:

int XXX_keysize(int *keysize);

Essentially it will round the input keysize in “keysize” down to the next appro-
priate key size. This function return CRYPT OK if the key size specified is
acceptable. For example:

#include <mycrypt.h>

int main(void)

{

int keysize, errno;

/* now given a 20 byte key what keysize does Twofish want to use? */

keysize = 20;

if ((errno = twofish_keysize(&keysize)) != CRYPT_OK) {

printf("Error getting key size: %s\n", error_to_string(errno));

return -1;

}

printf("Twofish suggested a key size of %d\n", keysize);

return 0;

}

This should indicate a keysize of sixteen bytes is suggested. An example snippet
that encodes a block with Blowfish in ECB mode is below.

#include <mycrypt.h>

int main(void)

{

unsigned char pt[8], ct[8], key[8];

symmetric_key skey;

int errno;

/* ... key is loaded appropriately in ‘‘key’’ ... */

/* ... load a block of plaintext in ‘‘pt’’ ... */

/* schedule the key */

1The size of which depends on which cipher you are using.
2pt stands for plaintext.
3As published in their design papers.

3.2. KEY SIZES AND NUMBER OF ROUNDS 19

if ((errno = blowfish_setup(key, 8, 0, &skey)) != CRYPT_OK) {

printf("Setup error: %s\n", error_to_string(errno));

return -1;

}

/* encrypt the block */

blowfish_ecb_encrypt(pt, ct, &skey);

/* decrypt the block */

blowfish_ecb_decrypt(ct, pt, &skey);

return 0;

}

3.2 Key Sizes and Number of Rounds

As a general rule of thumb do not use symmetric keys under 80 bits if you can.
Only a few of the ciphers support smaller keys (mainly for test vectors anyways).
Ideally your application should be making at least 256 bit keys. This is not
because you’re supposed to be paranoid. Its because if your PRNG has a bias
of any sort the more bits the better. For example, if you have Pr [X = 1] = 1

2±γ
where |γ| > 0 then the total amount of entropy in N bits is N · −log2

(
1
2 + |γ|

)
.

So if γ were 0.25 (a severe bias) a 256-bit string would have about 106 bits of
entropy whereas a 128-bit string would have only 53 bits of entropy.

The number of rounds of most ciphers is not an option you can change. Only
RC5 allows you to change the number of rounds. By passing zero as the number
of rounds all ciphers will use their default number of rounds. Generally the
ciphers are configured such that the default number of rounds provide adequate
security for the given block size.

3.3 The Cipher Descriptors

To facilitate automatic routines an array of cipher descriptors is provided in the
array “cipher descriptor”. An element of this array has the following format:

struct _cipher_descriptor {
char *name;
unsigned long min_key_length, max_key_length,

block_length, default_rounds;
int (*setup) (const unsigned char *key, int keylength,

int num_rounds, symmetric_key *skey);
void (*ecb_encrypt)(const unsigned char *pt, unsigned char *ct,

symmetric_key *key);
void (*ecb_decrypt)(const unsigned char *ct, unsigned char *pt,

symmetric_key *key);
int (*test) (void);

20 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

int (*keysize) (int *desired_keysize);
};

Where “name” is the lower case ASCII version of the name. The fields
“min key length”, “max key length” and “block length” are all the number of
bytes not bits. As a good rule of thumb it is assumed that the cipher sup-
ports the min and max key lengths but not always everything in between. The
“default rounds” field is the default number of rounds that will be used.

The remaining fields are all pointers to the core functions for each cipher.
The end of the cipher descriptor array is marked when “name” equals NULL.

As of this release the current cipher descriptors elements are

Name Descriptor Name Block Size (bytes) Key Range (bytes) Rounds

Blowfish blowfish desc 8 8 ... 56 16

X-Tea xtea desc 8 16 32

RC2 rc2 desc 8 8 .. 128 16

RC5-32/12/b rc5 desc 8 8 ... 128 12 ... 24

RC6-32/20/b rc6 desc 16 8 ... 128 20

SAFER+ saferp desc 16 16, 24, 32 8, 12, 16

Safer K64 safer k64 desc 8 8 6 .. 13

Safer SK64 safer sk64 desc 8 8 6 .. 13

Safer K128 safer k128 desc 8 16 6 .. 13

Safer SK128 safer sk128 desc 8 16 6 .. 13

Serpent serpent desc 16 16 .. 32 32

AES aes desc 16 16, 24, 32 10, 12, 14

Twofish twofish desc 16 16, 24, 32 16

DES des desc 8 7 16

3DES (EDE mode) des3 desc 8 21 16

CAST5 (CAST-128) cast5 desc 8 5 .. 16 12, 16

Noekeon noekeon desc 16 16 16

3.3.1 Notes

For the 64-bit SAFER famliy of ciphers (e.g K64, SK64, K128, SK128) the
ecb encrypt() and ecb decrypt() functions are the same. So if you want to
use those functions directly just call safer ecb encrypt() or safer ecb decrypt()
respectively.

Note that for “DES” and “3DES” they use 8 and 24 byte keys but only 7 and
21 [respectively] bytes of the keys are in fact used for the purposes of encryption.
My suggestion is just to use random 8/24 byte keys instead of trying to make a
8/24 byte string from the real 7/21 byte key.

Note that “Twofish” has additional configuration options that take place
at build time. These options are found in the file “mycrypt cfg.h”. The first
option is “TWOFISH SMALL” which when defined will force the Twofish code
to not pre-compute the Twofish “g(X)” function as a set of four 8× 32 s-boxes.
This means that a scheduled key will require less ram but the resulting cipher
will be slower. The second option is “TWOFISH TABLES” which when defined

3.3. THE CIPHER DESCRIPTORS 21

will force the Twofish code to use pre-computed tables for the two s-boxes q0, q1

as well as the multiplication by the polynomials 5B and EF used in the MDS
multiplication. As a result the code is faster and slightly larger. The speed
increase is useful when “TWOFISH SMALL” is defined since the s-boxes and
MDS multiply form the heart of the Twofish round function.

TWOFISH SMALL TWOFISH TABLES Speed and Memory (per key)

undefined undefined Very fast, 4.2KB of ram.

undefined defined As above, faster keysetup, larger code (1KB more).

defined undefined Very slow, 0.2KB of ram.

defined defined Somewhat faster, 0.2KB of ram, larger code.

To work with the cipher descriptor array there is a function:

int find_cipher(char *name)

Which will search for a given name in the array. It returns negative one if the
cipher is not found, otherwise it returns the location in the array where the
cipher was found. For example, to indirectly setup Blowfish you can also use:

#include <mycrypt.h>

int main(void)

{

unsigned char key[8];

symmetric_key skey;

int errno;

/* you must register a cipher before you use it */

if (register_cipher(&blowfish_desc)) == -1) {

printf("Unable to register Blowfish cipher.");

return -1;

}

/* generic call to function (assuming the key in key[] was already setup) */

if ((errno = cipher_descriptor[find_cipher("blowfish")].setup(key, 8, 0, &skey)) != CRYPT_OK) {

printf("Error setting up Blowfish: %s\n", error_to_string(errno));

return -1;

}

/* ... use cipher ... */

}

A good safety would be to check the return value of “find cipher()” before
accessing the desired function. In order to use a cipher with the descriptor table
you must register it first using:

int register_cipher(const struct _cipher_descriptor *cipher);

Which accepts a pointer to a descriptor and returns the index into the global
descriptor table. If an error occurs such as there is no more room (it can have
32 ciphers at most) it will return -1. If you try to add the same cipher more
than once it will just return the index of the first copy. To remove a cipher call:

22 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

int unregister_cipher(const struct _cipher_descriptor *cipher);

Which returns CRYPT OK if it removes it otherwise it returns CRYPT ERROR.
Consider:

#include <mycrypt.h>

int main(void)

{

int errno;

/* register the cipher */

if (register_cipher(&rijndael_desc) == -1) {

printf("Error registering Rijndael\n");

return -1;

}

/* use Rijndael */

/* remove it */

if ((errno = unregister_cipher(&rijndael_desc)) != CRYPT_OK) {

printf("Error removing Rijndael: %s\n", error_to_string(errno));

return -1;

}

return 0;

}

This snippet is a small program that registers only Rijndael only. Note you
must register ciphers before using the PK code since all of the PK code (RSA,
DH and ECC) rely heavily on the descriptor tables.

3.4 Symmetric Modes of Operations

3.4.1 Background

A typical symmetric block cipher can be used in chaining modes to effectively
encrypt messages larger than the block size of the cipher. Given a key k, a
plaintext P and a cipher E we shall denote the encryption of the block P under
the key k as Ek(P). In some modes there exists an initial vector denoted as
C−1.

ECB Mode

ECB or Electronic Codebook Mode is the simplest method to use. It is given
as:

Ci = Ek(Pi) (3.1)

This mode is very weak since it allows people to swap blocks and perform replay
attacks if the same key is used more than once.

3.4. SYMMETRIC MODES OF OPERATIONS 23

CBC Mode

CBC or Cipher Block Chaining mode is a simple mode designed to prevent
trivial forms of replay and swap attacks on ciphers. It is given as:

Ci = Ek(Pi ⊕ Ci−1) (3.2)

It is important that the initial vector be unique and preferably random for each
message encrypted under the same key.

CTR Mode

CTR or Counter Mode is a mode which only uses the encryption function of
the cipher. Given a initial vector which is treated as a large binary counter the
CTR mode is given as:

C−1 = C−1 + 1 (mod 2W)
Ci = Pi ⊕ Ek(C−1) (3.3)

Where W is the size of a block in bits (e.g. 64 for Blowfish). As long as the
initial vector is random for each message encrypted under the same key replay
and swap attacks are infeasible. CTR mode may look simple but it is as secure
as the block cipher is under a chosen plaintext attack (provided the initial vector
is unique).

CFB Mode

CFB or Ciphertext Feedback Mode is a mode akin to CBC. It is given as:

Ci = Pi ⊕ C−1

C−1 = Ek(Ci) (3.4)

Note that in this library the output feedback width is equal to the size of the
block cipher. That is this mode is used to encrypt whole blocks at a time.
However, the library will buffer data allowing the user to encrypt or decrypt
partial blocks without a delay. When this mode is first setup it will initially
encrypt the initial vector as required.

OFB Mode

OFB or Output Feedback Mode is a mode akin to CBC as well. It is given as:

C−1 = Ek(C−1)
Ci = Pi ⊕ C−1 (3.5)

Like the CFB mode the output width in CFB mode is the same as the width
of the block cipher. OFB mode will also buffer the output which will allow you
to encrypt or decrypt partial blocks without delay.

24 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

3.4.2 Choice of Mode

My personal preference is for the CTR mode since it has several key benefits:

1. No short cycles which is possible in the OFB and CFB modes.

2. Provably as secure as the block cipher being used under a chosen plaintext
attack.

3. Technically does not require the decryption routine of the cipher.

4. Allows random access to the plaintext.

5. Allows the encryption of block sizes that are not equal to the size of the
block cipher.

The CTR, CFB and OFB routines provided allow you to encrypt block sizes
that differ from the ciphers block size. They accomplish this by buffering the
data required to complete a block. This allows you to encrypt or decrypt any
size block of memory with either of the three modes.

The ECB and CBC modes process blocks of the same size as the cipher at
a time. Therefore they are less flexible than the other modes.

3.4.3 Implementation

The library provides simple support routines for handling CBC, CTR, CFB,
OFB and ECB encoded messages. Assuming the mode you want is XXX there is
a structure called “symmetric XXX” that will contain the information required
to use that mode. They have identical setup routines (except ECB mode for
obvious reasons):

int XXX_start(int cipher, const unsigned char *IV,
const unsigned char *key, int keylen,
int num_rounds, symmetric_XXX *XXX);

int ecb_start(int cipher, const unsigned char *key, int keylen,
int num_rounds, symmetric_ECB *ecb);

In each case “cipher” is the index into the cipher descriptor array of the
cipher you want to use. The “IV” value is the initialization vector to be used
with the cipher. You must fill the IV yourself and it is assumed they are the
same length as the block size4 of the cipher you choose. It is important that the
IV be random for each unique message you want to encrypt. The parameters
“key”, “keylen” and “num rounds” are the same as in the XXX setup() function
call. The final parameter is a pointer to the structure you want to hold the
information for the mode of operation.

4In otherwords the size of a block of plaintext for the cipher, e.g. 8 for DES, 16 for AES,
etc.

3.4. SYMMETRIC MODES OF OPERATIONS 25

Both routines return CRYPT OK if the cipher initialized correctly, oth-
erwise they return an error code. To actually encrypt or decrypt the following
routines are provided:

int XXX_encrypt(const unsigned char *pt, unsigned char *ct,
symmetric_XXX *XXX);

int XXX_decrypt(const unsigned char *ct, unsigned char *pt,
symmetric_XXX *XXX);

int YYY_encrypt(const unsigned char *pt, unsigned char *ct,
unsigned long len, symmetric_YYY *YYY);

int YYY_decrypt(const unsigned char *ct, unsigned char *pt,
unsigned long len, symmetric_YYY *YYY);

Where “XXX” is one of (ecb, cbc) and “YYY” is one of (ctr, ofb, cfb). In the
CTR, OFB and CFB cases “len” is the size of the buffer (as number of chars)
to encrypt or decrypt. The CTR, OFB and CFB modes are order sensitive but
not chunk sensitive. That is you can encrypt “ABCDEF” in three calls like
“AB”, “CD”, “EF” or two like “ABCDE” and “F” and end up with the same
ciphertext. However, encrypting “ABC” and “DABC” will result in different
ciphertexts. All five of the modes will return CRYPT OK on success from the
encrypt or decrypt functions.

To decrypt in either mode you simply perform the setup like before (recall
you have to fetch the IV value you used) and use the decrypt routine on all
of the blocks. When you are done working with either mode you should wipe
the memory (using “zeromem()”) to help prevent the key from leaking. For
example:

26 CHAPTER 3. SYMMETRIC BLOCK CIPHERS

#include <mycrypt.h>

int main(void)

{

unsigned char key[16], IV[16], buffer[512];

symmetric_CTR ctr;

int x, errno;

/* register twofish first */

if (register_cipher(&twofish_desc) == -1) {

printf("Error registering cipher.\n");

return -1;

}

/* somehow fill out key and IV */

/* start up CTR mode */

if ((errno = ctr_start(find_cipher("twofish"), IV, key, 16, 0, &ctr)) != CRYPT_OK) {

printf("ctr_start error: %s\n", error_to_string(errno));

return -1;

}

/* somehow fill buffer than encrypt it */

if ((errno = ctr_encrypt(buffer, buffer, sizeof(buffer), &ctr)) != CRYPT_OK) {

printf("ctr_encrypt error: %s\n", error_to_string(errno));

return -1;

}

/* make use of ciphertext... */

/* clear up and return */

zeromem(key, sizeof(key));

zeromem(&ctr, sizeof(ctr));

return 0;

}

Chapter 4

One-Way Cryptographic
Hash Functions

4.1 Core Functions

Like the ciphers there are hash core functions and a universal data type to hold
the hash state called “hash state”. To initialize hash XXX (where XXX is the
name) call:

void XXX_init(hash_state *md);

This simply sets up the hash to the default state governed by the specifica-
tions of the hash. To add data to the message being hashed call:

void XXX_process(hash_state *md, const unsigned char *in, unsigned long len);

Essentially all hash messages are virtually infinitely1 long message which are
buffered. The data can be passed in any sized chunks as long as the order of
the bytes are the same the message digest (hash output) will be the same. For
example, this means that:

md5_process(&md, "hello ", 6);
md5_process(&md, "world", 5);

Will produce the same message digest as the single call:

md5_process(&md, "hello world", 11);

To finally get the message digest (the hash) call:

void XXX_done(hash_state *md,
unsigned char *out);

1Most hashes are limited to 264 bits or 2,305,843,009,213,693,952 bytes.

27

28 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

This function will finish up the hash and store the result in the “out” array.
You must ensure that “out” is long enough for the hash in question. Often
hashes are used to get keys for symmetric ciphers so the “XXX done()” functions
will wipe the “md” variable before returning automatically.

To test a hash function call:

int XXX_test(void);

This will return CRYPTO OK if the hash matches the test vectors, other-
wise it returns an error code. An example snippet that hashes a message with
md5 is given below.

#include <mycrypt.h>

int main(void)

{

hash_state md;

unsigned char *in = "hello world", out[16];

/* setup the hash */

md5_init(&md);

/* add the message */

md5_process(&md, in, strlen(in));

/* get the hash in out[0..15] */

md5_done(&md, out);

return 0;

}

4.2 Hash Descriptors

Like the set of ciphers the set of hashes have descriptors too. They are stored
in an array called “hash descriptor” and are defined by:

struct _hash_descriptor {
char *name;
unsigned long hashsize; /* digest output size in bytes */
unsigned long blocksize; /* the block size the hash uses */
void (*init) (hash_state *);
void (*process)(hash_state *, const unsigned char *, unsigned long);
void (*done) (hash_state *, unsigned char *);
int (*test) (void);

};

Similarly “name” is the name of the hash function in ASCII (all lowercase).
“hashsize” is the size of the digest output in bytes. The remaining fields are
pointers to the functions that do the respective tasks. There is a function to

4.2. HASH DESCRIPTORS 29

search the array as well called “int find hash(char *name)”. It returns -1 if the
hash is not found, otherwise the position in the descriptor table of the hash.

You can use the table to indirectly call a hash function that is chosen at
runtime. For example:

#include <mycrypt.h>

int main(void)

{

unsigned char buffer[100], hash[MAXBLOCKSIZE];

int idx, x;

hash_state md;

/* register hashes */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* register other hashes ... */

/* prompt for name and strip newline */

printf("Enter hash name: \n");

fgets(buffer, sizeof(buffer), stdin);

buffer[strlen(buffer) - 1] = 0;

/* get hash index */

idx = find_hash(buffer);

if (idx == -1) {

printf("Invalid hash name!\n");

return -1;

}

/* hash input until blank line */

hash_descriptor[idx].init(&md);

while (fgets(buffer, sizeof(buffer), stdin) != NULL)

hash_descriptor[idx].process(&md, buffer, strlen(buffer));

hash_descriptor[idx].done(&md, hash);

/* dump to screen */

for (x = 0; x < hash_descriptor[idx].hashsize; x++)

printf("%02x ", hash[x]);

printf("\n");

return 0;

}

Note the usage of “MAXBLOCKSIZE”. In Libtomcrypt no symmetric block,
key or hash digest is larger than MAXBLOCKSIZE in length. This provides a
simple size you can set your automatic arrays to that will not get overrun.

There are three helper functions as well:

int hash_memory(int hash, const unsigned char *data,

30 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

unsigned long len, unsigned char *dst,
unsigned long *outlen);

int hash_file(int hash, const char *fname,
unsigned char *dst,
unsigned long *outlen);

int hash_filehandle(int hash, FILE *in,
unsigned char *dst, unsigned long *outlen);

The “hash” parameter is the location in the descriptor table of the hash
(e.g. the return of find hash()). The “*outlen” variable is used to keep track
of the output size. You must set it to the size of your output buffer before
calling the functions. When they complete succesfully they store the length of
the message digest back in it. The functions are otherwise straightforward. The
“hash filehandle” function assumes that “in” is an file handle opened in binary
mode. It will hash to the end of file and not reset the file position when finished.

To perform the above hash with md5 the following code could be used:

#include <mycrypt.h>

int main(void)

{

int idx, errno;

unsigned long len;

unsigned char out[MAXBLOCKSIZE];

/* register the hash */

if (register_hash(&md5_desc) == -1) {

printf("Error registering MD5.\n");

return -1;

}

/* get the index of the hash */

idx = find_hash("md5");

/* call the hash */

len = sizeof(out);

if ((errno = hash_memory(idx, "hello world", 11, out, &len)) != CRYPT_OK) {

printf("Error hashing data: %s\n", error_to_string(errno));

return -1;

}

return 0;

}

The following hashes are provided as of this release:

4.3. HASH BASED MESSAGE AUTHENICATION CODES 31

Name Descriptor Name Size of Message Digest (bytes)
SHA-512 sha512 desc 64
SHA-384 sha384 desc 48
SHA-256 sha256 desc 32

TIGER-192 tiger desc 24
SHA-1 sha1 desc 20
MD5 md5 desc 16
MD4 md4 desc 16
MD2 md2 desc 16

Similar to the cipher descriptor table you must register your hash algorithms
before you can use them. These functions work exactly like those of the cipher
registration code. The functions are:

int register_hash(const struct _hash_descriptor *hash);
int unregister_hash(const struct _hash_descriptor *hash);

4.2.1 Notice

It is highly recommended that you not use the MD4 or MD5 hashes for the
purposes of digital signatures or authentication codes. These hashes are pro-
vided for completeness and they still can be used for the purposes of password
hashing or one-way accumulators (e.g. Yarrow).

The other hashes such as the SHA-1, SHA-2 (that includes SHA-512, SHA-
384 and SHA-256) and TIGER-192 are still considered secure for all purposes
you would normally use a hash for.

4.3 Hash based Message Authenication Codes

Thanks to Dobes Vandermeer the library now includes support for hash based
message authenication codes or HMAC for short. An HMAC of a message is a
keyed authenication code that only the owner of a private symmetric key will be
able to verify. The purpose is to allow an owner of a private symmetric key to
produce an HMAC on a message then later verify if it is correct. Any impostor
or eavesdropper will not be able to verify the authenticity of a message.

The HMAC support works much like the normal hash functions except that
the initialization routine requires you to pass a key and its length. The key is
much like a key you would pass to a cipher. That is, it is simply an array of
octets stored in chars. The initialization routine is:

int hmac_init(hmac_state *hmac, int hash,
const unsigned char *key, unsigned long keylen);

The “hmac” parameter is the state for the HMAC code. “hash” is the index into
the descriptor table of the hash you want to use to authenticate the message.
“key” is the pointer to the array of chars that make up the key. “keylen” is the
length (in octets) of the key you want to use to authenticate the message. To

32 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

send octets of a message through the HMAC system you must use the following
function:

int hmac_process(hmac_state *hmac, const unsigned char *buf,
unsigned long len);

“hmac” is the HMAC state you are working with. “buf” is the array of octets to
send into the HMAC process. “len” is the number of octets to process. Like the
hash process routines you can send the data in arbitrarly sized chunks. When
you are finished with the HMAC process you must call the following function
to get the HMAC code:

int hmac_done(hmac_state *hmac, unsigned char *hash);

“hmac” is the HMAC state you are working with. “hash” is the array of octets
where the HMAC code should be stored. You must ensure that your destination
array is the right size (or just make it of size MAXBLOCKSIZE to be sure).

There are two utility functions provided to make using HMACs easier todo.
They accept the key and information about the message (file pointer, address
in memory) and produce the HMAC result in one shot. These are useful if you
want to avoid calling the three step process yourself.

int hmac_memory(int hash, const unsigned char *key, unsigned long keylen,
const unsigned char *data, unsigned long len,
unsigned char *dst, unsigned long *dstlen);

This will produce an HMAC code for the array of octets in “data” of length
“len”. The index into the hash descriptor table must be provided in “hash”. It
uses the key from “key” with a key length of “keylen”. The result is stored in
the array of octets “dst” and the length in “dstlen”. The value of “dstlen” must
be set to the size of the destination buffer before calling this function. Similarly
for files there is the following function:

int hmac_file(int hash, const char *fname, const unsigned char *key,
unsigned long keylen,
unsigned char *dst, unsigned long *dstlen);

“hash” is the index into the hash descriptor table of the hash you want to use.
“fname” is the filename to process. “key” is the array of octets to use as the
key of length “keylen”. “dst” is the array of octets where the result should be
stored.

To test if the HMAC code is working there is the following function:

int hmac_test(void);

Which returns CRYPT OK if the code passes otherwise it returns an error
code. Some example code for using the HMAC system is given below.

4.3. HASH BASED MESSAGE AUTHENICATION CODES 33

#include <mycrypt.h>

int main(void)

{

int idx, errno;

hmac_state hmac;

unsigned char key[16], dst[MAXBLOCKSIZE];

/* register SHA-1 */

if (register_hash(&sha1_desc) == -1) {

printf("Error registering SHA1\n");

return -1;

}

/* get index of SHA1 in hash descriptor table */

idx = find_hash("sha1");

/* we would make up our symmetric key in "key[]" here */

/* start the HMAC */

if ((errno = hmac_init(&hmac, idx, key, 16)) != CRYPT_OK) {

printf("Error setting up hmac: %s\n", error_to_string(errno));

return -1;

}

/* process a few octets */

if((errno = hmac_process(&hmac, "hello", 5) != CRYPT_OK) {

printf("Error processing hmac: %s\n", error_to_string(errno));

return -1;

}

/* get result (presumably to use it somehow...) */

if ((errno = hmac_done(&hmac, dst)) != CRYPT_OK) {

printf("Error finishing hmac: %s\n", error_to_string(errno));

return -1;

}

/* return */

return 0;

}

34 CHAPTER 4. ONE-WAY CRYPTOGRAPHIC HASH FUNCTIONS

Chapter 5

Pseudo-Random Number
Generators

5.1 Core Functions

The library provides an array of core functions for Pseudo-Random Number
Generators (PRNGs) as well. A cryptographic PRNG is used to expand a
shorter bit string into a longer bit string. PRNGs are used wherever random
data is required such as Public Key (PK) key generation. There is a universal
structure called “prng state”. To initialize a PRNG call:

int XXX_start(prng_state *prng);

This will setup the PRNG for future use and not seed it. In order for the
PRNG to be cryptographically useful you must give it entropy. Ideally you’d
have some OS level source to tap like in UNIX (see section 5.3). To add entropy
to the PRNG call:

int XXX_add_entropy(const unsigned char *in, unsigned long len,
prng_state *prng);

Which returns CRYPTO OK if the entropy was accepted. Once you think
you have enough entropy you call another function to put the entropy into
action.

int XXX_ready(prng_state *prng);

Which returns CRYPTO OK if it is ready. Finally to actually read bytes
call:

unsigned long XXX_read(unsigned char *out, unsigned long len,
prng_state *prng);

Which returns the number of bytes read from the PRNG.

35

36 CHAPTER 5. PSEUDO-RANDOM NUMBER GENERATORS

5.1.1 Remarks

It is possible to be adding entropy and reading from a PRNG at the same time.
For example, if you first seed the PRNG and call ready() you can now read from
it. You can also keep adding new entropy to it. The new entropy will not be
used in the PRNG until ready() is called again. This allows the PRNG to be
used and re-seeded at the same time. No real error checking is guaranteed to
see if the entropy is sufficient or if the PRNG is even in a ready state before
reading.

5.1.2 Example

Below is a simple snippet to read 10 bytes from yarrow. Its important to note
that this snippet is NOT secure since the entropy added is not random.

#include <mycrypt.h>
int main(void)
{

prng_state prng;
unsigned char buf[10];
int errno;

/* start it */
if ((errno = yarrow_start(&prng)) != CRYPT_OK) {

printf("Start error: %s\n", error_to_string(errno));
}
/* add entropy */
if ((errno = yarrow_add_entropy("hello world", 11, &prng)) != CRYPT_OK) {

printf("Add_entropy error: %s\n", error_to_string(errno));
}
/* ready and read */
if ((errno = yarrow_ready(&prng)) != CRYPT_OK) {

printf("Ready error: %s\n", error_to_string(errno));
}
printf("Read %lu bytes from yarrow\n", yarrow_read(buf, 10, &prng));
return 0;

}

5.2 PRNG Descriptors

PRNGs have descriptors too (surprised?). Stored in the structure “prng descriptor”.
The format of an element is:

struct _prng_descriptor {
char *name;
int (*start) (prng_state *);

5.2. PRNG DESCRIPTORS 37

int (*add_entropy)(const unsigned char *, unsigned long, prng_state *);
int (*ready) (prng_state *);
unsigned long (*read)(unsigned char *, unsigned long len, prng_state *);

};

There is a “int find prng(char *name)” function as well. Returns -1 if the
PRNG is not found, otherwise it returns the position in the prng descriptor
array.

Just like the ciphers and hashes you must register your prng before you can
use it. The two functions provided work exactly as those for the cipher registry
functions. They are:

int register_prng(const struct _prng_descriptor *prng);
int unregister_prng(const struct _prng_descriptor *prng);

PRNGs Provided

Currently Yarrow (yarrow desc), RC4 (rc4 desc) and the secure RNG (sprng desc)
are provided as PRNGs within the library.

RC4 is provided with a PRNG interface because it is a stream cipher and
not well suited for the symmetric block cipher interface. You provide the key
for RC4 via the rc4 add entropy() function. By calling rc4 ready() the key will
be used to setup the RC4 state for encryption or decryption. The rc4 read()
function has been modified from RC4 since it will XOR the output of the RC4
keystream generator against the input buffer you provide. The following snippet
will demonstrate how to encrypt a buffer with RC4:

#include <mycrypt.h>

int main(void)

{

prng_state prng;

unsigned char buf[32];

int errno;

if ((errno = rc4_start(&prng)) != CRYPT_OK) {

printf("RC4 init error: %s\n", error_to_string(errno));

exit(-1);

}

/* use ‘‘key’’ as the key */

if ((errno = rc4_add_entropy("key", 3, &prng)) != CRYPT_OK) {

printf("RC4 add entropy error: %s\n", error_to_string(errno));

exit(-1);

}

/* setup RC4 for use */

if ((errno = rc4_ready(&prng)) != CRYPT_OK) {

printf("RC4 ready error: %s\n", error_to_string(errno));

exit(-1);

38 CHAPTER 5. PSEUDO-RANDOM NUMBER GENERATORS

}

/* encrypt buffer */

strcpy(buf,"hello world");

if (rc4_read(buf, 11, &prng) != 11) {

printf("RC4 read error\n");

exit(-1);

}

return 0;

}

To decrypt you have to do the exact same steps.

5.3 The Secure RNG

An RNG is related to a PRNG except that it doesn’t expand a smaller seed to get
the data. They generate their random bits by performing some computation on
fresh input bits. Possibly the hardest thing to get correctly in a cryptosystem
is the PRNG. Computers are deterministic beasts that try hard not to stray
from pre-determined paths. That makes gathering entropy needed to seed the
PRNG a hard task.

There is one small function that may help on certain platforms:

unsigned long rng_get_bytes(unsigned char *buf, unsigned long len,
void (*callback)(void));

Which will try one of three methods of getting random data. The first
is to open the popular “/dev/random” device which on most *NIX platforms
provides cryptographic random bits1. The second method is to try the Microsoft
Cryptographic Service Provider and read the RNG. The third method is an
ANSI C clock drift method that is also somewhat popular but gives bits of lower
entropy. The “callback” parameter is a pointer to a function that returns void.
Its used when the slower ANSI C RNG must be used so the calling application
can still work. This is useful since the ANSI C RNG has a throughput of three
bytes a second. The callback pointer may be set to NULL to avoid using it
if you don’t want to. The function returns the number of bytes actually read
from any RNG source. There is a function to help setup a PRNG as well:

int rng_make_prng(int bits, int wprng, prng_state *prng,
void (*callback)(void));

This will try to setup the prng with a state of at least “bits” of entropy. The
“callback” parameter works much like the callback in “rng get bytes()”. It is
highly recommended that you use this function to setup your PRNGs unless
you have a platform where the RNG doesn’t work well. Example usage of this
function is given below.

1This device is available in Windows through the Cygwin compiler suite. It emulates
“/dev/random” via the Microsoft CSP.

5.3. THE SECURE RNG 39

#include <mycrypt.h>

int main(void)

{

ecc_key mykey;

prng_state prng;

int errno;

/* register yarrow */

if (register_prng(&yarrow_desc) == -1) {

printf("Error registering Yarrow\n");

return -1;

}

/* setup the PRNG */

if ((errno = rng_make_prng(128, find_prng("yarrow"), &prng, NULL)) != CRYPT_OK) {

printf("Error setting up PRNG, %s\n", error_to_string(errno));

return -1;

}

/* make a 192-bit ECC key */

if ((errno = ecc_make_key(&prng, find_prng("yarrow"), 24, &mykey)) != CRYPT_OK) {

printf("Error making key: %s\n", error_to_string(errno));

return -1;

}

return 0;

}

5.3.1 The Secure PRNG Interface

It is possible to access the secure RNG through the PRNG interface and in
turn use it within dependent functions such as the PK API. This simplifies the
cryptosystem on platforms where the secure RNG is fast. The secure PRNG
never requires to be started, that is you need not call the start, add entropy or
ready functions. For example, consider the previous example using this PRNG.

#include <mycrypt.h>

int main(void)

{

ecc_key mykey;

int errno;

/* register SPRNG */

if (register_prng(&sprng_desc) == -1) {

printf("Error registering SPRNG\n");

return -1;

}

/* make a 192-bit ECC key */

if ((errno = ecc_make_key(NULL, find_prng("sprng"), 24, &mykey)) != CRYPT_OK) {

40 CHAPTER 5. PSEUDO-RANDOM NUMBER GENERATORS

printf("Error making key: %s\n", error_to_string(errno));

return -1;

}

return 0;

}

Chapter 6

RSA Routines

6.1 Background

RSA is a public key algorithm that is based on the inability to find the “e-th”
root modulo a composite of unknown factorization. Normally the difficulty of
breaking RSA is associated with the integer factoring problem but they are not
strictly equivalent.

The system begins with with two primes p and q and their product N = pq.
The order or “Euler totient” of the multiplicative sub-group formed modulo
N is given as ϕ(N) = (p − 1)(q − 1) which can be reduced to lcm(p − 1, q −
1). The public key consists of the composite N and some integer e such that
gcd(e, ϕ(N)) = 1. The private key consists of the composite N and the inverse
of e modulo ϕ(N) often simply denoted as de ≡ 1 (mod ϕ(N)).

A person who wants to encrypt with your public key simply forms an integer
(the plaintext) M such that 1 < M < N − 2 and computes the ciphertext
C = Me (mod N). Since finding the inverse exponent d given only N and
e appears to be intractable only the owner of the private key can decrypt the
ciphertext and compute Cd ≡ (Me)d ≡ M1 ≡ M (mod N). Similarly the owner
of the private key can sign a message by “decrypting” it. Others can verify it
by “encrypting” it.

Currently RSA is a difficult system to cryptanalyze provided that both
primes are large and not close to each other. Ideally e should be larger than
100 to prevent direct analysis. For example, if e is three and you do not pad the
plaintext to be encrypted than it is possible that M3 < N in which case finding
the cube-root would be trivial. The most often suggested value for e is 65537
since it is large enough to make such attacks impossible and also well designed
for fast exponentiation (requires 16 squarings and one multiplication).

It is important to pad the input to RSA since it has particular mathematical
structure. For instance Md

1 Md
2 = (M1M2)d which can be used to forge a signa-

ture. Suppose M3 = M1M2 is a message you want to have a forged signature
for. Simply get the signatures for M1 and M2 on their own and multiply the re-

41

42 CHAPTER 6. RSA ROUTINES

sult together. Similar tricks can be used to deduce plaintexts from ciphertexts.
It is important not only to sign the hash of documents only but also to pad the
inputs with data to remove such structure.

6.2 Core Functions

For RSA routines a single “rsa key” structure is used. To make a new RSA key
call:

int rsa_make_key(prng_state *prng,
int wprng, int size,
long e, rsa_key *key);

Where “wprng” is the index into the PRNG descriptor array. “size” is
the size in bytes of the RSA modulus desired. “e” is the encryption exponent
desired, typical values are 3, 17, 257 and 65537. I suggest you stick with 65537
since its big enough to prevent trivial math attacks and not super slow. “key”
is where the key is placed. All keys must be at least 128 bytes and no more
than 512 bytes in size (that is from 1024 to 4096 bits).

Note that the “rsa make key()” function allocates memory at runtime when
you make the key. Make sure to call “rsa free()” (see below) when you are
finished with the key. If “rsa make key()” fails it will automatically free the
ram allocated itself.

There are three types of RSA keys. The types are PK PRIVATE OPTIMIZED,
PK PRIVATE and PK PUBLIC. The first two are private keys where the
“optimized” type uses the Chinese Remainder Theorem to speed up decryp-
tion/signatures. By default all new keys are of the “optimized” type. The
non-optimized private type is provided for backwards compatibility as well as
to save space since the optimized key requires about four times as much memory.

To do raw work with the RSA function call:

int rsa_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
int which, rsa_key *key);

This loads the bignum from “in” as a big endian word in the format PKCS
specifies, raises it to either “e” or “d” and stores the result in “out” and the size
of the result in “outlen”. “which” is set to PK PUBLIC to use “e” (i.e. for
encryption/verifying) and set to PK PRIVATE to use “d” as the exponent
(i.e. for decrypting/signing).

6.3 Packet Routines

To encrypt or decrypt a symmetric key using RSA the following functions are
provided. The idea is that you make up a random symmetric key and use that
to encode your message. By RSA encrypting the symmetric key you can send it
to a recipient who can RSA decrypt it and symmetrically decrypt the message.

6.3. PACKET ROUTINES 43

int rsa_encrypt_key(const unsigned char *inkey, unsigned long inlen,
unsigned char *outkey, unsigned long *outlen,
prng_state *prng, int wprng, rsa_key *key);

This function is used to RSA encrypt a symmetric to share with another user.
The symmetric key and its length are passed as “inkey” and “inlen” respectively.
The symmetric key is limited to a range of 8 to 32 bytes (64 to 256 bits). The
RSA encrypted packet is stored in “outkey” and will be of length “outlen” bytes.
The value of “outlen” must be originally set to the size of the output buffer.

int rsa_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
rsa_key *key);

This function will decrypt an RSA packet to retrieve the original symmetric
key encrypted with rsa encrypt key(). Similarly to sign or verify a hash of a
message the following two messages are provided. The idea is to hash your
message then use these functions to RSA sign the hash.

int rsa_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
rsa_key *key);

int rsa_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, int *stat, rsa_key *key);

For “rsa sign hash” the input is intended to be the hash of a message the user
wants to sign. The output is the RSA signed packet which “rsa verify hash”
can verify. For the verification function “sig” is the RSA signature and “hash”
is the hash of the message. The integer “stat” is set to non-zero if the signature
is valid or zero otherwise.

To import/export RSA keys as a memory buffer (e.g. to store them to disk)
call:

int rsa_export(unsigned char *out, unsigned long *outlen,
int type, rsa_key *key);

int rsa_import(const unsigned char *in, unsigned long inlen, rsa_key *key);

The “type” parameter is PK PUBLIC, PK PRIVATE or PK PRIVATE OPTIMIZED
to export either a public or private key. The latter type will export a key with
the optimized parameters. To free the memory used by an RSA key call:

void rsa_free(rsa_key *key);

Note that if the key fails to “rsa import()” you do not have to free the
memory allocated for it.

44 CHAPTER 6. RSA ROUTINES

6.4 Remarks

It is important that you match your RSA key size with the function you are
performing. The internal padding for both signatures and encryption triple the
size of the plaintext. This means to encrypt or sign a message of N bytes you
must have a modulus of 1+3N bytes. Note that this doesn’t affect the length of
the plaintext you pass into functions like rsa encrypt(). This restriction applies
only to data that is passed through the internal RSA routines directly directly.

The following table gives the size requirements for various hashes.

Name Size of Message Digest (bytes) RSA Key Size (bits)
SHA-512 64 1544
SHA-384 48 1160
SHA-256 32 776

TIGER-192 24 584
SHA-1 20 488
MD5 16 392
MD4 16 392

The symmetric ciphers will use at a maximum a 256-bit key which means
at the least a 776-bit RSA key is required to use all of the symmetric ciphers
with the RSA routines. If you want to use any of the large size message digests
(SHA-512 or SHA-384) you will have to use a larger key. Or to be simple just
make 2048-bit or larger keys. None of the hashes will have problems with such
key sizes.

Chapter 7

Diffie-Hellman Key
Exchange

7.1 Background

Diffie-Hellman was the original public key system proposed. The system is based
upon the group structure of finite fields. For Diffie-Hellman a prime p is chosen
and a “base” b such that bx (mod p) generates a large sub-group of prime order
(for unique values of x).

A secret key is an exponent x and a public key is the value of y ≡ gx (mod p).
The term “discrete logarithm” denotes the action of finding x given only y, g
and p. The key exchange part of Diffie-Hellman arises from the fact that two
users A and B with keys (Ax, Ay) and (Bx, By) can exchange a shared key
K ≡ BAx

y ≡ ABx
y ≡ gAxBx (mod p).

From this public encryption and signatures can be developed. The trivial
way to encrypt (for example) using a public key y is to perform the key exchange
offline. The sender invents a key k and its public copy k′ ≡ gk (mod p) and uses
K ≡ k′Ax (mod p) as a key to encrypt the message with. Typically K would be
sent to a one-way hash and the message digested used as a key in a symmetric
cipher.

It is important that the order of the sub-group that g generates not only be
large but also prime. There are discrete logarithm algorithms that take

√
r time

given the order r. The discrete logarithm can be computed modulo each prime
factor of r and the results combined using the Chinese Remainder Theorem. In
the cases where r is “B-Smooth” (e.g. all small factors or powers of small prime
factors) the solution is trivial to find.

To thwart such attacks the primes and bases in the library have been de-
signed and fixed. Given a prime p the order of the sub-group generated is a large
prime namely p−1

2 . Such primes are known as “strong primes” and the smaller
prime (e.g. the order of the base) are known as Sophie-Germaine primes.

45

46 CHAPTER 7. DIFFIE-HELLMAN KEY EXCHANGE

7.2 Core Functions

This library also provides core Diffie-Hellman functions so you can negotiate
keys over insecure mediums. The routines provided are relatively easy to use
and only take two function calls to negotiate a shared key. There is a structure
called “dh key” which stores the Diffie-Hellman key in a format these routines
can use. The first routine is to make a Diffie-Hellman private key pair:

int dh_make_key(prng_state *prng, int wprng,
int keysize, dh_key *key);

The “keysize” is the size of the modulus you want in bytes. Currently support
sizes are 96 to 512 bytes which correspond to key sizes of 768 to 4096 bits.
The smaller the key the faster it is to use however it will be less secure. When
specifying a size not explicitly supported by the library it will round up to the
next key size. If the size is above 512 it will return an error. So if you pass
“keysize == 32” it will use a 768 bit key but if you pass “keysize == 20000” it
will return an error. The primes and generators used are built-into the library
and were designed to meet very specific goals. The primes are strong primes
which means that if p is the prime then p − 1 is equal to 2r where r is a large
prime. The bases are chosen to generate a group of order r to prevent leaking
a bit of the key. This means the bases generate a very large prime order group
which is good to make cryptanalysis hard.

The next two routines are for exporting/importing Diffie-Hellman keys in a
binary format. This is useful for transport over communication mediums.

int dh_export(unsigned char *out, unsigned long *outlen,
int type, dh_key *key);

int dh_import(const unsigned char *in, unsigned long inlen, dh_key *key);

These two functions work just like the “rsa export()” and “rsa import()”
functions except these work with Diffie-Hellman keys. Its important to note
you do not have to free the ram for a “dh key” if an import fails. You can free
a “dh key” using:

void dh_free(dh_key *key);

After you have exported a copy of your public key (using PK PUBLIC as
“type”) you can now create a shared secret with the other user using:

int dh_shared_secret(dh_key *private_key,
dh_key *public_key,
unsigned char *out, unsigned long *outlen);

Where “private key” is the key you made and “public key” is the copy of the
public key the other user sent you. The result goes into “out” and the length
into “outlen”. If all went correctly the data in “out” should be identical for
both parties. It is important to note that the two keys have to be the same size
in order for this to work. There is a function to get the size of a key:

7.2. CORE FUNCTIONS 47

int dh_get_size(dh_key *key);

This returns the size in bytes of the modulus chosen for that key.

7.2.1 Remarks on Usage

Its important that you hash the shared key before trying to use it as a key for a
symmetric cipher or something. An example program that communicates over
sockets, using MD5 and 1024-bit DH keys is1:

1This function is a small example. It is suggested that proper packaging be used. For
example, if the public key sent is truncated these routines will not detect that.

48 CHAPTER 7. DIFFIE-HELLMAN KEY EXCHANGE

int establish_secure_socket(int sock, int mode, unsigned char *key,

prng_state *prng, int wprng)

{

unsigned char buf[4096], buf2[4096];

unsigned long x, len;

int res, errno, inlen;

dh_key mykey, theirkey;

/* make up our private key */

if ((errno = dh_make_key(prng, wprng, 128, &mykey)) != CRYPT_OK) {

return errno;

}

/* export our key as public */

x = sizeof(buf);

if ((errno = dh_export(buf, &x, PK_PUBLIC, &mykey)) != CRYPT_OK) {

res = errno;

goto done2;

}

if (mode == 0) {

/* mode 0 so we send first */

if (send(sock, buf, x, 0) != x) {

res = CRYPT_ERROR;

goto done2;

}

/* get their key */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {

res = CRYPT_ERROR;

goto done2;

}

} else {

/* mode >0 so we send second */

if ((inlen = recv(sock, buf2, sizeof(buf2), 0)) <= 0) {

res = CRYPT_ERROR;

goto done2;

}

if (send(sock, buf, x, 0) != x) {

res = CRYPT_ERROR;

goto done2;

}

}

if ((errno = dh_import(buf2, inlen, &theirkey)) != CRYPT_OK) {

res = errno;

goto done2;

}

7.2. CORE FUNCTIONS 49

/* make shared secret */

x = sizeof(buf);

if ((errno = dh_shared_secret(&mykey, &theirkey, buf, &x)) != CRYPT_OK) {

res = errno;

goto done;

}

/* hash it */

len = 16; /* default is MD5 so "key" must be at least 16 bytes long */

if ((errno = hash_memory(find_hash("md5"), buf, x, key, &len)) != CRYPT_OK) {

res = errno;

goto done;

}

/* clean up and return */

res = CRYPT_OK;

done:

dh_free(&theirkey);

done2:

dh_free(&mykey);

zeromem(buf, sizeof(buf));

zeromem(buf2, sizeof(buf2));

return res;

}

50 CHAPTER 7. DIFFIE-HELLMAN KEY EXCHANGE

7.2.2 Remarks on The Snippet

When the above code snippet is done (assuming all went well) their will be a
shared 128-bit key in the “key” array passed to “establish secure socket()”.

7.3 Other Diffie-Hellman Functions

In order to test the Diffie-Hellman function internal workings (e.g. the primes
and bases) their is a test function made available:

int dh_test(void);

This function returns CRYPT OK if the bases and primes in the library
are correct. There is one last helper function:

void dh_sizes(int *low, int *high);

Which stores the smallest and largest key sizes support into the two variables.

7.4 DH Packet

Similar to the RSA related functions there are functions to encrypt or decrypt
symmetric keys using the DH public key algorithms.

int dh_encrypt_key(const unsigned char *inkey, unsigned long keylen,
unsigned char *out, unsigned long *len,
prng_state *prng, int wprng, int hash,
dh_key *key);

int dh_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
dh_key *key);

Where “inkey” is an input symmetric key of no more than 32 bytes. Essentially
these routines created a random public key and find the hash of the shared
secret. The message digest is than XOR’ed against the symmetric key. All of
the required data is placed in “out” by “dh encrypt key()”. The hash must
produce a message digest at least as large as the symmetric key you are trying
to share.

Similar to the RSA system you can sign and verify a hash of a message.

int dh_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, dh_key *key);

int dh_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,
int *stat, dh_key *key);

7.4. DH PACKET 51

The “dh sign hash” function signs the message hash in “in” of length “inlen”
and forms a DH packet in “out”. The “dh verify hash” function verifies the DH
signature in “sig” against the hash in “hash”. It sets “stat” to non-zero if the
signature passes or zero if it fails.

52 CHAPTER 7. DIFFIE-HELLMAN KEY EXCHANGE

Chapter 8

Elliptic Curve
Cryptography

8.1 Background

The library provides a set of core ECC functions as well that are designed to be
the Elliptic Curve analogy of all of the Diffie-Hellman routines in the previous
chapter. Elliptic curves (of certain forms) have the benefit that they are harder
to attack (no sub-exponential attacks exist unlike normal DH crypto) in fact
the fastest attack requires the square root of the order of the base point in
time. That means if you use a base point of order 2192 (which would represent
a 192-bit key) then the work factor is 296 in order to find the secret key.

The curves in this library are taken from the following website:

http://csrc.nist.gov/cryptval/dss.htm

They are all curves over the integers modulo a prime. The curves have the
basic equation that is:

y2 = x3 − 3x + b (mod p) (8.1)

The variable b is chosen such that the number of points is nearly maximal.
In fact the order of the base points β provided are very close to p that is
||ϕ(β)||∼||p||. The curves range in order from ∼2192 points to ∼2521. According
to the source document any key size greater than or equal to 256-bits is sufficient
for long term security.

8.2 Core Functions

Like the DH routines there is a key structure “ecc key” used by the functions.
There is a function to make a key:

53

54 CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY

int ecc_make_key(prng_state *prng, int wprng,
int keysize, ecc_key *key);

The “keysize” is the size of the modulus in bytes desired. Currently directly
supported values are 20, 24, 28, 32, 48 and 65 bytes which correspond to key
sizes of 160, 192, 224, 256, 384 and 521 bits respectively. If you pass a key size
that is between any key size it will round the keysize up to the next available one.
The rest of the parameters work like they do in the “dh make key()” function.
To free the ram allocated by a key call:

void ecc_free(ecc_key *key);

To import and export a key there are:

int ecc_export(unsigned char *out, unsigned long *outlen,
int type, ecc_key *key);

int ecc_import(const unsigned char *in, unsigned long inlen, ecc_key *key);

These two work exactly like there DH counterparts. Finally when you share
your public key you can make a shared secret with:

int ecc_shared_secret(ecc_key *private_key,
ecc_key *public_key,
unsigned char *out, unsigned long *outlen);

Which works exactly like the DH counterpart, the “private key” is your own
key and “public key” is the key the other user sent you. Note that this function
stores both x and y co-ordinates of the shared elliptic point. You should hash
the output to get a shared key in a more compact and useful form (most of the
entropy is in x anyways). Both keys have to be the same size for this to work,
to help there is a function to get the size in bytes of a key.

int ecc_get_size(ecc_key *key);

To test the ECC routines and to get the minimum and maximum key sizes
there are these two functions:

int ecc_test(void);
void ecc_sizes(int *low, int *high);

Which both work like their DH counterparts.

8.3 ECC Packet

Similar to the RSA API there are two functions which encrypt and decrypt
symmetric keys using the ECC public key algorithms.

8.4. ECC KEYSIZES 55

int ecc_encrypt_key(const unsigned char *inkey, unsigned long keylen,
unsigned char *out, unsigned long *len,
prng_state *prng, int wprng, int hash,
ecc_key *key);

int ecc_decrypt_key(const unsigned char *in, unsigned long inlen,
unsigned char *outkey, unsigned long *keylen,
ecc_key *key);

Where “inkey” is an input symmetric key of no more than 32 bytes. Es-
sentially these routines created a random public key and find the hash of the
shared secret. The message digest is than XOR’ed against the symmetric key.
All of the required data is placed in “out” by “ecc encrypt key()”. The hash
chosen must produce a message digest at least as large as the symmetric key
you are trying to share.

There are also functions to sign and verify the hash of a message.

int ecc_sign_hash(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, ecc_key *key);

int ecc_verify_hash(const unsigned char *sig, unsigned long siglen,
const unsigned char *hash, unsigned long hashlen,

int *stat, ecc_key *key);

The “ecc sign hash” function signs the message hash in “in” of length “inlen”
and forms a ECC packet in “out”. The “ecc verify hash” function verifies the
ECC signature in “sig” against the hash in “hash”. It sets “stat” to non-zero if
the signature passes or zero if it fails.

8.4 ECC Keysizes

With ECC if you try and sign a hash that is bigger than your ECC key you can
run into problems. The math will still work and in effect the signature will still
work. With ECC keys the strength of the signature is limited by the size of the
hash or the size of they key, whichever is smaller. For example, if you sign with
SHA256 and a ECC-160 key in effect you have 160-bits of security (e.g. as if
you signed with SHA-1).

The library will not warn you if you make this mistake so it is important to
check yourself before using the signatures.

56 CHAPTER 8. ELLIPTIC CURVE CRYPTOGRAPHY

Chapter 9

Public Keyrings

9.1 Introduction

In order to simplify the usage of the public key algorithms a set of keyring
routines have been developed. They let the developer manage asymmetric keys
by providing load, save, export, import routines as well as encrypt, decrypt,
sign, verify routines in a unified API. That is all three types of PK systems can
be used within the same keyring with the same API.

To define types of keys there are four enumerations used globaly:

enum {
NON_KEY=0,
RSA_KEY,
DH_KEY,
ECC_KEY

};

To make use of the system the developer has to know how link-lists work.
The main structure that the keyring routines use is the “pk key” defined as:

typedef struct Pk_key {

int key_type, /* PUBLIC, PRIVATE, PRIVATE_OPTIMIZED */

system; /* RSA, ECC or DH ? */

char name[MAXLEN], /* various info’s about this key */

email[MAXLEN],

description[MAXLEN];

unsigned long ID; /* CRC32 of the name/email/description together */

_pk_key key;

struct Pk_key *next; /* linked list chain */

} pk_key;

57

58 CHAPTER 9. PUBLIC KEYRINGS

The list is chained via the “next” member and terminated with the node of
the list that has “system” equal to NON KEY.

9.2 The Keyring API

To initialize a blank keyring the function “kr init()” is used.

int kr_init(pk_key **pk);

You pass it a pointer to a pointer of type “pk key” where it will allocate ram
for one node of the keyring and sets the pointer.

Now instead of calling the PK specific “make key” functions there is one
function that can make all three types of keys.

int kr_make_key(pk_key *pk, prng_state *prng, int wprng,
int system, int keysize, const char *name,
const char *email, const char *description);

The “name”, “email” and “description” parameters are simply little pieces of
information that you can tag along with a key. They can each be either blank
or any string less than 256 bytes. “system” is one of the enumeration elements,
that is RSA KEY, DH KEY or ECC KEY. “keysize” is the size of the key
you desire which is regulated by the individual systems, for example, RSA keys
are limited in keysize from 128 to 512 bytes.

To find keys along a keyring there are two functions provided:

pk_key *kr_find(pk_key *pk, unsigned long ID);

pk_key *kr_find_name(pk_key *pk, const char *name);

The first searches by the 32-bit ID provided and the latter checks the name
against the keyring. They both return a pointer to the node in the ring of a
match or NULL if no match is found.

To export or import a single node of a keyring the two functions are provided:

int kr_export(pk_key *pk, unsigned long ID, int key_type,
unsigned char *out, unsigned long *outlen);

int kr_import(pk_key *pk, const unsigned char *in);

The export function exports the key with an ID provided and of a specific
type much like the normal PK export routines. The “key type” is one of
PK PUBLIC or PK PRIVATE. In this function with RSA keys the type
PK PRIVATE OPTIMIZED is the same as the PK PRIVATE type. The
import function will read in a packet and add it to the keyring.

To load and save whole keyrings from disk:

int kr_load(pk_key **pk, FILE *in, symmetric_CTR *ctr);

int kr_save(pk_key *pk, FILE *out, symmetric_CTR *ctr);

9.2. THE KEYRING API 59

Both take file pointers to allow the user to pre-append data to the stream.
The “ctr” parameter should be setup with “ctr start” or set to NULL. This
parameter lets the user encrypt the keyring as its written to disk, if it is set to
NULL the data is written without being encrypted. The load function assumes
the list has not been initialized yet and will reset the pointer given to it.

There are the four encrypt, decrypt, sign and verify functions as well

int kr_encrypt_key(pk_key *pk, unsigned long ID,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng, int hash);

int kr_decrypt_key(pk_key *pk, const unsigned char *in,
unsigned char *out, unsigned long *outlen);

The kr encrypt key() routine is designed to encrypt a symmetric key with a
specified users public key. The symmetric key is then used with a block cipher to
encode the message. The recipient can call kr decrypt key() to get the original
symmetric key back and decode the message. The hash specified must produce
a message digest longer than symmetric key provided.

int kr_sign_hash(pk_key *pk, unsigned long ID,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen,
prng_state *prng, int wprng);

int kr_verify_hash(pk_key *pk, const unsigned char *in,
const unsigned char *hash, unsigned long hashlen,
int *stat);

Similar to the two previous these are used to sign a message digest or verify
one. This requires hashing the message first then passing the output in.

To delete keys and clear rings there are:

int kr_del(pk_key **_pk, unsigned long ID);
int kr_clear(pk_key **pk);

“kr del” will try to remove a key with a given ID from the ring and “kr clear”
will completely empty a list and free the memory associated with it. Below is
small example using the keyring API:

#include <mycrypt.h>

int main(void)

{

pk_key *kr;

unsigned char buf[4096], buf2[4096];

unsigned long len;

int errno;

60 CHAPTER 9. PUBLIC KEYRINGS

/* make a new list */

if ((errno = kr_init(&kr)) != CRYPT_OK) {

printf("kr_init: %s\n", error_to_string(errno));

exit(-1);

}

/* add a key to it */

register_prng(&sprng_desc);

if ((errno = kr_make_key(kr, NULL, find_prng("sprng"), RSA_KEY, 128,

"TomBot", "tomstdenis@yahoo.com", "test key")) == CRYPT_OK) {

printf("kr_make_key: %s\n", error_to_string(errno));

exit(-1);

}

/* export the first key */

len = sizeof(buf);

if ((errno = kr_export(kr, kr->ID, PK_PRIVATE, buf, &len)) != CRYPT_OK) {

printf("kr_export: %s\n", error_to_string(errno));

exit(-1);

}

/* ... */

}

Chapter 10

GF (2w) Math Routines

The library provides a set of polynomial-basis GF (2w) routines to help facilitate
algorithms such as ECC over such fields. Note that the current implementation
of ECC in the library is strictly over the integers only. The routines are simple
enough to use for other purposes outside of ECC.

At the heart of all of the GF routines is the data type “gf int’. It is simply
a type definition for an array of L 32-bit words. You can configure the maxi-
mum size L of the “gf int” type by opening the file “mycrypt.h” and changing
“LSIZE”. Note that if you set it to n then you can only multiply upto two n

2
bit polynomials without an overflow. The type “gf intp” is associated with a
pointer to an “unsigned long” as required in the algorithms.

There are no initialization routines for “gf int” variables and you can simply
use them after declaration. There are five low level functions:

void gf_copy(gf_intp a, gf_intp b);
void gf_zero(gf_intp a);
int gf_iszero(gf_intp a);
int gf_isone(gf_intp a);
int gf_deg(gf_intp a);

There are all fairly self-explanatory. “gf copy(a, b)” copies the contents of “a”
into “b”. “gf zero()” simply zeroes the entire polynomial. “gf iszero()” tests to
see if the polynomial is all zero and “gf isone()” tests to see if the polynomial
is equal to the multiplicative identity. “gf deg()” returns the degree of the
polynomial or −1 if its a zero polynomial.

There are five core math routines as well:

void gf_shl(gf_intp a, gf_intp b);
void gf_shr(gf_intp a, gf_intp b);
void gf_add(gf_intp a, gf_intp b, gf_intp c);
void gf_mul(gf_intp a, gf_intp b, gf_intp c);
void gf_div(gf_intp a, gf_intp b, gf_intp q, gf_intp r);

61

62 CHAPTER 10. GF (2W) MATH ROUTINES

Which are all fairly obvious. “gf shl(a,b)” multiplies the polynomial “a” by
x and stores it in “b”. “gf shl(a,b)” divides the polynomial “a” by x and stores
it in “b”. “gf add(a,b,c)” adds the polynomial “a” to “b” and stores the sum
in “c”. Similarly for “gf mul(a,b,c)”. The “gf div(a,b,q,r)” function divides “a”
by “b” and stores the quotient in “q” and the remainder in “r”.

There are six number theoretic functions as well:

void gf_mod(gf_intp a, gf_intp m, gf_intp b);
void gf_mulmod(gf_intp a, gf_intp b, gf_intp m, gf_intp c);
void gf_invmod(gf_intp A, gf_intp M, gf_intp B);
void gf_sqrt(gf_intp a, gf_intp m, gf_intp b);
void gf_gcd(gf_intp A, gf_intp B, gf_intp c);
int gf_is_prime(gf_intp a);

Which all work similarly except for “gf mulmod(a,b,m,c)” which computes
c = ab (mod m). The “gf is prime()” function returns one if the polynomial is
primitive, otherwise it returns zero.

Finally to read/store a “gf int” in a binary string use:

int gf_size(gf_intp a);
void gf_toraw(gf_intp a, unsigned char *dst);
void gf_readraw(gf_intp a, unsigned char *str, int len);

Where “gf size()” returns the size in bytes required for the data. “gf toraw(a,b)”
stores the polynomial in “b” in binary format (endian neutral). “gf readraw(a,b,c)”
reads the binary string in “b” back. Note that the length you pass it must be
the same as returned by “gf size()” or it will not load correctly.

Chapter 11

Miscellaneous

11.1 Base64 Encoding and Decoding

The library provides functions to encode and decode a RFC1521 base64 coding
scheme. This means that it can decode what it encodes but the format used
does not comply to any known standard. The characters used in the mappings
are:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Those characters should are supported in virtually any 7-bit ASCII system which
means they can be used for transport over common e-mail, usenet and HTTP
mediums. The format of an encoded stream is just a literal sequence of ASCII
characters where a group of four represent 24-bits of input. The first four chars
of the encoders output is the length of the original input. After the first four
characters is the rest of the message.

Often it is desirable to line wrap the output to fit nicely in an e-mail or
usenet posting. The decoder allows you to put any character (that is not in the
above sequence) in between any character of the encoders output. You may not
however, break up the first four characters.

To encode a binary string in base64 call:

int base64_encode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);

Where “in” is the binary string and “out” is where the ASCII output is placed.
You must set the value of “outlen” prior to calling this function and it sets the
length of the base64 output in “outlen” when it is done. To decode a base64
string call:

int base64_decode(const unsigned char *in, unsigned long len,
unsigned char *out, unsigned long *outlen);

63

64 CHAPTER 11. MISCELLANEOUS

11.2 The Multiple Precision Integer Library (MPI)

The library comes with a copy of LibTomMath which is a multiple precision
integer library written by the author of LibTomCrypt. LibTomMath is a trivial
to use ANSI C compatible large integer library which is free for all uses and is
distributed freely.

At the heart of all the functions is the data type “mp int” (defined in tom-
math.h). This data type is what will hold all large integers. In order to use an
mp int one must initialize it first, for example:

#include <mycrypt.h> /* mycrypt.h includes mpi.h automatically */
int main(void)
{

mp_int bignum;

/* initialize it */
mp_init(&bignum);

return 0;
}

If you are unfamiliar with the syntax of C the & symbol is used to pass the
address of “bignum” to the function. All LibTomMath functions require the
address of the parameters. To free the memory of a mp int use (for example):

mp_clear(&bignum);

The functions also have the basic form of one of the following:

mp_XXX(mp_int *a);
mp_XXX(mp_int *a, mp_int *b, mp_int *c);
mp_XXX(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

Where they perform some operation and store the result in the mp int vari-
able passed on the far right. For example, to compute c = a + b (mod m) you
would call:

mp_addmod(&a, &b, &m, &c);

11.2.1 Binary Forms of “mp int” Variables

Often it is required to store a “mp int” in binary form for transport (e.g. ex-
porting a key, packet encryption, etc.). LibTomMath includes two functions to
help when exporting numbers:

int mp_raw_size(mp_int *num);
mp_toraw(&num, buf);

11.2. THE MULTIPLE PRECISION INTEGER LIBRARY (MPI) 65

The former function gives the size in bytes of the raw format and the latter
function actually stores the raw data. All “mp int” numbers are stored in big
endian form (like PKCS demands) with the first byte being the sign of the
number. The “rsa exptmod()” function differs slightly since it will take the
input in the form exactly as PKCS demands (without the leading sign byte).
All other functions include the sign byte (since its much simpler just to include
it). The sign byte must be zero for positive numbers and non-zero for negative
numbers. For example, the sequence:

00 FF 30 04

Represents the integer 255 · 2562 + 48 · 2561 + 4 · 2560 or 16,723,972.
To read a binary string back into a “mp int” call:

mp_read_raw(mp_int *num, unsigned char *str, int len);

Where “num” is where to store it, “str” is the binary string (including the
leading sign byte) and “len” is the length of the binary string.

11.2.2 Primality Testing

The library includes primality testing and random prime functions as well. The
primality tester will perform the test in two phases. First it will perform trial
division by the first few primes. Second it will perform eight rounds of the
Rabin-Miller primality testing algorithm. If the candidate passes both phases it
is declared prime otherwise it is declared composite. No prime number will fail
the two phases but composites can. Each round of the Rabin-Miller algorithm
reduces the probability of a pseudo-prime by 1

4 therefore after sixteen rounds
the probability is no more than

(
1
4

)8 = 2−16. In practice the probability of error
is in fact much lower than that.

When making random primes the trial division step is in fact an optimized
implementation of “Implementation of Fast RSA Key Generation on Smart
Cards”1. In essence a table of machine-word sized residues are kept of a can-
didate modulo a set of primes. When the candiate is rejected and ultimately
incremented to test the next number the residues are updated without using
multi-word precision math operations. As a result the routine can scan ahead
to the next number required for testing with very little work involved.

In the event that a composite did make it through it would most likely cause
the the algorithm trying to use it to fail. For instance, in RSA two primes
p and q are required. The order of the multiplicative sub-group (modulo pq)
is given as ϕ(pq) or (p − 1)(q − 1). The decryption exponent d is found as
de ≡ 1 (mod ϕ(pq)). If either p or q is composite the value of d will be incorrect
and the user will not be able to sign or decrypt messages at all. Suppose p
was prime and q was composite this is just a variation of the multi-prime RSA.
Suppose q = rs for two primes r and s then ϕ(pq) = (p− 1)(r− 1)(s− 1) which
clearly is not equal to (p− 1)(rs− 1).

1Chenghuai Lu, Andre L. M. dos Santos and Francisco R. Pimentel

66 CHAPTER 11. MISCELLANEOUS

These are not technically part of the LibTomMath library but this is the
best place to document them. To test if a “mp int” is prime call:

int is_prime(mp_int *N, int *result);

This puts a one in “result” if the number is probably prime, otherwise it places
a zero in it. It is assumed that if it returns an error that the value in “result”
is undefined. To make a random prime call:

int rand_prime(mp_int *N, unsigned long len, prng_state *prng, int wprng);

Where “len” is the size of the prime in bytes (2 ≤ len ≤ 256). You can set “len”
to the negative size you want to get a prime of the form p ≡ 3 (mod 4). So if
you want a 1024-bit prime of this sort pass “len = -128” to the function. Upon
success it will return CRYPT OK and “N” will contain an integer which is
very likely prime.

Chapter 12

Programming Guidelines

12.1 Secure Pseudo Random Number Genera-
tors

Probably the singal most vulnerable point of any cryptosystem is the PRNG.
Without one generating and protecting secrets would be impossible. The re-
quirement that one be setup correctly is vitally important and to address this
point the library does provide two RNG sources that will address the largest
amount of end users as possible. The “sprng” PRNG provided provides and
easy to access source of entropy for any application on a *NIX or Windows
computer.

However, when the end user is not on one of these platforms the application
developer must address the issue of finding entropy. This manual is not designed
to be a text on cryptography. I would just like to highlight that when you design
a cryptosystem make sure the first problem you solve is getting a fresh source
of entropy.

12.2 Preventing Trivial Errors

Two simple ways to prevent trivial errors is to prevent overflows and to check
the return values. All of the functions which output variable length strings will
require you to pass the length of the destination. If the size of your output
buffer is smaller than the output it will report an error. Therefore, make sure
the size you pass is correct!

Also virtually all of the functions return an error code or CRYPT OK. You
should detect all errors as simple typos or such can cause algorithms to fail to
work as desired.

67

68 CHAPTER 12. PROGRAMMING GUIDELINES

12.3 Registering Your Algorithms

To avoid linking and other runtime errors it is important to register the ciphers,
hashes and PRNGs you intend to use before you try to use them. This includes
any function which would use an algorithm indirectly through a descriptor table.

A neat bonus to the registry system is that you can add external algorithms
that are not part of the library without having to hack the library. For example,
suppose you have a hardware specific PRNG on your system. You could easily
write the few functions required plus a descriptor. After registering your PRNG
all of the library functions that need a PRNG can instantly take advantage of
it.

12.4 Key Sizes

12.4.1 Symmetric Ciphers

For symmetric ciphers use as large as of a key as possible. For the most part
“bits are cheap” so using a 256-bit key is not a hard thing todo.

12.4.2 Assymetric Ciphers

The following chart gives the work factor for solving a DH/RSA public key using
the NFS. The work factor for a key of order n is estimated to be

e1.923·ln(n)
1
3 ·ln(ln(n))

2
3 (12.1)

Note that n is not the bit-length but the magnitude. For example, for a
1024-bit key n = 21024. The work required is:

RSA/DH Key Size (bits) Work Factor (log2)
512 63.92
768 76.50
1024 86.76
1536 103.37
2048 116.88
2560 128.47
3072 138.73
4096 156.49

The work factor for ECC keys is much higher since the best attack is still
fully exponentional. Given a key of magnitude n it requires

√
n work. The

following table sumarizes the work required:

12.5. THREAD SAFETY 69

ECC Key Size (bits) Work Factor (log2)
160 80
192 96
224 112
256 128
384 192
521 260.5

Using the above tables the following suggestions for key sizes seems appro-
priate:

Security Goal RSA/DH Key Size (bits) ECC Key Size (bits)
Short term (less than a year) 1024 160

Short term (less than five years) 1536 192
Long Term (less than ten years) 2560 256

12.5 Thread Safety

The library is not thread safe but several simple precautions can be taken to
avoid any problems. The registry functions such as register cipher() are not
thread safe no matter what you do. Its best to call them from your programs
initializtion code before threads are initiated.

The rest of the code uses state variables you must pass it such as hash state,
hmac state, etc. This means that if each thread has its own state variables then
they will not affect each other. This is fairly simple with symmetric ciphers
and hashes. However, the keyring and PRNG support is something the threads
will want to share. The simplest workaround is create semaphores or mutexes
around calls to those functions.

Since C does not have standard semaphores this support is not native to
Libtomcrypt. Even a C based semaphore is not entire possible as some compilers
may ignore the “volatile” keyword or have multiple processors. Provide your
host application is modular enough putting the locks in the right place should
not bloat the code significantly and will solve all thread safety issues within the
library.

70 CHAPTER 12. PROGRAMMING GUIDELINES

Chapter 13

Configuring the Library

13.1 Introduction

The library is fairly flexible about how it can be built, used and generally
distributed. Additions are being made with each new release that will make the
library even more flexible. Most options are placed in the makefile and others
are in “mycrypt cfg.h”. All are used when the library is built from scratch.

For GCC platforms the file “makefile” is the makefile to be used. On MSVC
platforms “makefile.vc” and on PS2 platforms “makefile.ps2”.

13.2 mycrypt cfg.h

The file “mycrypt cfg.h” is what lets you control what functionality you want
to remove from the library. By default, everything the library has to offer it
built.

ARGTYPE

This lets you control how the ARGCHK macro will behave. The macro is used
to check pointers inside the functions against NULL. There are three settings
for ARGTYPE. When set to 0 it will have the default behaviour of printing
a message to stderr and raising a SIGABRT signal. This is provided so all
platforms that use libtomcrypt can have an error that functions similarly. When
set to 1 it will simply pass on to the assert() macro. When set to 2 it will resolve
to a empty macro and no error checking will be performed.

Endianess

There are five macros related to endianess issues. For little endian platforms
define, ENDIAN LITTLE. For big endian platforms define ENDIAN BIG. Sim-
ilarly when the default word size of an “unsigned long” is 32-bits define EN-
DIAN 32BITWORD or define ENDIAN 64BITWORD when its 64-bits. If you

71

72 CHAPTER 13. CONFIGURING THE LIBRARY

do not define any of them the library will automatically use ENDIAN NEUTRAL
which will work on all platforms. Currently the system will automatically detect
GCC or MSVC on a windows platform as well as GCC on a PS2 platform.

13.3 The Configure Script

There are also options you can specify from the configure script or “mycrypt config.h”.

X memory routines

The makefiles must define three macros denoted as XMALLOC, XCALLOC
and XFREE which resolve to the name of the respective functions. This lets
you substitute in your own memory routines. If you substitute in your own
functions they must behave like the standard C library functions in terms of
what they expect as input and output. By default the library uses the standard
C routines.

X clock routines

The rng get bytes() function can call a function that requires the clock() func-
tion. These macros let you override the default clock() used with a replacement.
By default the standard C library clock() function is used.

NO FILE

During the build if NO FILE is defined then any function in the library that
uses file I/O will not call the file I/O functions and instead simply return
CRYPT ERROR. This should help resolve any linker errors stemming from
a lack of file I/O on embedded platforms.

CLEAN STACK

When this functions is defined the functions that store key material on the stack
will clean up afterwards. Assumes that you have no memory paging with the
stack.

Symmetric Ciphers, One-way Hashes, PRNGS and Public Key Func-
tions

There are a plethora of macros for the ciphers, hashes, PRNGs and public
key functions which are fairly self-explanatory. When they are defined the
functionality is included otherwise it is not. There are some dependency issues
which are noted in the file. For instance, Yarrow requires CTR chaining mode,
a block cipher and a hash function.

13.3. THE CONFIGURE SCRIPT 73

TWOFISH SMALL and TWOFISH TABLES

Twofish is a 128-bit symmetric block cipher that is provided within the library.
The cipher itself is flexible enough to allow some tradeoffs in the implementation.
When TWOFISH SMALL is defined the scheduled symmetric key for Twofish
requires only 200 bytes of memory. This is achieved by not pre-computing the
substitution boxes. Having this defined will also greatly slow down the cipher.
When this macro is not defined Twofish will pre-compute the tables at a cost
of 4KB of memory. The cipher will be much faster as a result.

When TWOFISH TABLES is defined the cipher will use pre-computed (and
fixed in code) tables required to work. This is useful when TWOFISH SMALL
is defined as the table values are computed on the fly. When this is defined
the code size will increase by approximately 500 bytes. If this is defined but
TWOFISH SMALL is not the cipher will still work but it will not speed up the
encryption or decryption functions.

SMALL CODE

When this is defined some of the code such as the Rijndael and SAFER+ ciphers
are replaced with smaller code variants. These variants are slower but can save
quite a bit of code space.

