798 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			798 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* LibTomCrypt, modular cryptographic library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomCrypt is a library that provides various cryptographic
 | |
|  * algorithms in a highly modular and flexible manner.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  */
 | |
| #include <tomcrypt.h>
 | |
| 
 | |
| void hash_gen(void)
 | |
| {
 | |
|    unsigned char md[MAXBLOCKSIZE], *buf;
 | |
|    unsigned long outlen, x, y, z;
 | |
|    FILE *out;
 | |
|    int   err;
 | |
| 
 | |
|    out = fopen("hash_tv.txt", "w");
 | |
|    if (out == NULL) {
 | |
|       perror("can't open hash_tv");
 | |
|    }
 | |
| 
 | |
|    fprintf(out, "Hash Test Vectors:\n\nThese are the hashes of nn bytes '00 01 02 03 .. (nn-1)'\n\n");
 | |
|    for (x = 0; hash_descriptor[x].name != NULL; x++) {
 | |
|       buf = XMALLOC(2 * hash_descriptor[x].blocksize + 1);
 | |
|       if (buf == NULL) {
 | |
|          perror("can't alloc mem");
 | |
|          exit(EXIT_FAILURE);
 | |
|       }
 | |
|       fprintf(out, "Hash: %s\n", hash_descriptor[x].name);
 | |
|       for (y = 0; y <= (hash_descriptor[x].blocksize * 2); y++) {
 | |
|          for (z = 0; z < y; z++) {
 | |
|             buf[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          outlen = sizeof(md);
 | |
|          if ((err = hash_memory(x, buf, y, md, &outlen)) != CRYPT_OK) {
 | |
|             printf("hash_memory error: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3lu: ", y);
 | |
|          for (z = 0; z < outlen; z++) {
 | |
|             fprintf(out, "%02X", md[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|       XFREE(buf);
 | |
|    }
 | |
|    fclose(out);
 | |
| }
 | |
| 
 | |
| void cipher_gen(void)
 | |
| {
 | |
|    unsigned char *key, pt[MAXBLOCKSIZE];
 | |
|    unsigned long x, y, z, w;
 | |
|    int err, kl, lastkl;
 | |
|    FILE *out;
 | |
|    symmetric_key skey;
 | |
| 
 | |
|    out = fopen("cipher_tv.txt", "w");
 | |
| 
 | |
|    fprintf(out,
 | |
| "Cipher Test Vectors\n\nThese are test encryptions with key of nn bytes '00 01 02 03 .. (nn-1)' and original PT of the same style.\n"
 | |
| "The output of step N is used as the key and plaintext for step N+1 (key bytes repeated as required to fill the key)\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       fprintf(out, "Cipher: %s\n", cipher_descriptor[x].name);
 | |
| 
 | |
|       /* three modes, smallest, medium, large keys */
 | |
|       lastkl = 10000;
 | |
|       for (y = 0; y < 3; y++) {
 | |
|          switch (y) {
 | |
|             case 0: kl = cipher_descriptor[x].min_key_length; break;
 | |
|             case 1: kl = (cipher_descriptor[x].min_key_length + cipher_descriptor[x].max_key_length)/2; break;
 | |
|             case 2: kl = cipher_descriptor[x].max_key_length; break;
 | |
|          }
 | |
|          if ((err = cipher_descriptor[x].keysize(&kl)) != CRYPT_OK) {
 | |
|             printf("keysize error: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          if (kl == lastkl) break;
 | |
|          lastkl = kl;
 | |
|          fprintf(out, "Key Size: %d bytes\n", kl);
 | |
| 
 | |
|          key = XMALLOC(kl);
 | |
|          if (key == NULL) {
 | |
|             perror("can't malloc memory");
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
| 
 | |
|          for (z = 0; (int)z < kl; z++) {
 | |
|              key[z] = (unsigned char)z;
 | |
|          }
 | |
|          if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
 | |
|             printf("setup error: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
| 
 | |
|          for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
 | |
|             pt[z] = (unsigned char)z;
 | |
|          }
 | |
|          for (w = 0; w < 50; w++) {
 | |
|              cipher_descriptor[x].ecb_encrypt(pt, pt, &skey);
 | |
|              fprintf(out, "%2lu: ", w);
 | |
|              for (z = 0; (int)z < cipher_descriptor[x].block_length; z++) {
 | |
|                 fprintf(out, "%02X", pt[z]);
 | |
|              }
 | |
|              fprintf(out, "\n");
 | |
| 
 | |
|              /* reschedule a new key */
 | |
|              for (z = 0; z < (unsigned long)kl; z++) {
 | |
|                  key[z] = pt[z % cipher_descriptor[x].block_length];
 | |
|              }
 | |
|              if ((err = cipher_descriptor[x].setup(key, kl, 0, &skey)) != CRYPT_OK) {
 | |
|                 printf("cipher setup2 error: %s\n", error_to_string(err));
 | |
|                 exit(EXIT_FAILURE);
 | |
|              }
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
|          XFREE(key);
 | |
|      }
 | |
|      fprintf(out, "\n");
 | |
|   }
 | |
|   fclose(out);
 | |
| }
 | |
| 
 | |
| void hmac_gen(void)
 | |
| {
 | |
|    unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], *input;
 | |
|    int x, y, z, err;
 | |
|    FILE *out;
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("hmac_tv.txt", "w");
 | |
| 
 | |
|    fprintf(out,
 | |
| "HMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are HMACed.  The initial key is\n"
 | |
| "of the same format (the same length as the HASH output size).  The HMAC key in step N+1 is the HMAC output of\n"
 | |
| "step N.\n\n");
 | |
| 
 | |
|    for (x = 0; hash_descriptor[x].name != NULL; x++) {
 | |
|       fprintf(out, "HMAC-%s\n", hash_descriptor[x].name);
 | |
| 
 | |
|       /* initial key */
 | |
|       for (y = 0; y < (int)hash_descriptor[x].hashsize; y++) {
 | |
|           key[y] = (y&255);
 | |
|       }
 | |
| 
 | |
|       input = XMALLOC(hash_descriptor[x].blocksize * 2 + 1);
 | |
|       if (input == NULL) {
 | |
|          perror("Can't malloc memory");
 | |
|          exit(EXIT_FAILURE);
 | |
|       }
 | |
| 
 | |
|       for (y = 0; y <= (int)(hash_descriptor[x].blocksize * 2); y++) {
 | |
|          for (z = 0; z < y; z++) {
 | |
|             input[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(output);
 | |
|          if ((err = hmac_memory(x, key, hash_descriptor[x].hashsize, input, y, output, &len)) != CRYPT_OK) {
 | |
|             printf("Error hmacing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y);
 | |
|          for (z = 0; z <(int) len; z++) {
 | |
|             fprintf(out, "%02X", output[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          memcpy(key, output, hash_descriptor[x].hashsize);
 | |
|       }
 | |
|       XFREE(input);
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| }
 | |
| 
 | |
| void omac_gen(void)
 | |
| {
 | |
| #ifdef LTC_OMAC
 | |
|    unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
 | |
|    int err, x, y, z, kl;
 | |
|    FILE *out;
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("omac_tv.txt", "w");
 | |
| 
 | |
|    fprintf(out,
 | |
| "OMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are OMAC'ed.  The initial key is\n"
 | |
| "of the same format (length specified per cipher).  The OMAC key in step N+1 is the OMAC output of\n"
 | |
| "step N (repeated as required to fill the array).\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 64 or 128 bit block sizes */
 | |
|       if (kl != 8 && kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "OMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* initial key/block */
 | |
|       for (y = 0; y < kl; y++) {
 | |
|           key[y] = (y & 255);
 | |
|       }
 | |
| 
 | |
|       for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
 | |
|          for (z = 0; z < y; z++) {
 | |
|             input[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(output);
 | |
|          if ((err = omac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
 | |
|             printf("Error omacing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y);
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", output[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = output[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void pmac_gen(void)
 | |
| {
 | |
| #ifdef LTC_PMAC
 | |
|    unsigned char key[MAXBLOCKSIZE], output[MAXBLOCKSIZE], input[MAXBLOCKSIZE*2+2];
 | |
|    int err, x, y, z, kl;
 | |
|    FILE *out;
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("pmac_tv.txt", "w");
 | |
| 
 | |
|    fprintf(out,
 | |
| "PMAC Tests.  In these tests messages of N bytes long (00,01,02,...,NN-1) are PMAC'ed.  The initial key is\n"
 | |
| "of the same format (length specified per cipher).  The PMAC key in step N+1 is the PMAC output of\n"
 | |
| "step N (repeated as required to fill the array).\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 64 or 128 bit block sizes */
 | |
|       if (kl != 8 && kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "PMAC-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* initial key/block */
 | |
|       for (y = 0; y < kl; y++) {
 | |
|           key[y] = (y & 255);
 | |
|       }
 | |
| 
 | |
|       for (y = 0; y <= (int)(cipher_descriptor[x].block_length*2); y++) {
 | |
|          for (z = 0; z < y; z++) {
 | |
|             input[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(output);
 | |
|          if ((err = pmac_memory(x, key, kl, input, y, output, &len)) != CRYPT_OK) {
 | |
|             printf("Error omacing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y);
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", output[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = output[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void eax_gen(void)
 | |
| {
 | |
| #ifdef LTC_EAX_MODE
 | |
|    int err, kl, x, y1, z;
 | |
|    FILE *out;
 | |
|    unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2], header[MAXBLOCKSIZE*2],
 | |
|                  plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("eax_tv.txt", "w");
 | |
|    fprintf(out, "EAX Test Vectors.  Uses the 00010203...NN-1 pattern for header/nonce/plaintext/key.  The outputs\n"
 | |
|                 "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
 | |
|                 "step repeated sufficiently.\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 64 or 128 bit block sizes */
 | |
|       if (kl != 8 && kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "EAX-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* the key */
 | |
|       for (z = 0; z < kl; z++) {
 | |
|           key[z] = (z & 255);
 | |
|       }
 | |
| 
 | |
|       for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             plaintext[z] = (unsigned char)(z & 255);
 | |
|             nonce[z]     = (unsigned char)(z & 255);
 | |
|             header[z]    = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(tag);
 | |
|          if ((err = eax_encrypt_authenticate_memory(x, key, kl, nonce, y1, header, y1, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
 | |
|             printf("Error EAX'ing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y1);
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             fprintf(out, "%02X", plaintext[z]);
 | |
|          }
 | |
|          fprintf(out, ", ");
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", tag[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = tag[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ocb_gen(void)
 | |
| {
 | |
| #ifdef LTC_OCB_MODE
 | |
|    int err, kl, x, y1, z;
 | |
|    FILE *out;
 | |
|    unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
 | |
|                  plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("ocb_tv.txt", "w");
 | |
|    fprintf(out, "OCB Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/plaintext/key.  The outputs\n"
 | |
|                 "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
 | |
|                 "step repeated sufficiently.  The nonce is fixed throughout.\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 64 or 128 bit block sizes */
 | |
|       if (kl != 8 && kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* the key */
 | |
|       for (z = 0; z < kl; z++) {
 | |
|           key[z] = (z & 255);
 | |
|       }
 | |
| 
 | |
|       /* fixed nonce */
 | |
|       for (z = 0; z < cipher_descriptor[x].block_length; z++) {
 | |
|           nonce[z] = z;
 | |
|       }
 | |
| 
 | |
|       for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             plaintext[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(tag);
 | |
|          if ((err = ocb_encrypt_authenticate_memory(x, key, kl, nonce, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
 | |
|             printf("Error OCB'ing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y1);
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             fprintf(out, "%02X", plaintext[z]);
 | |
|          }
 | |
|          fprintf(out, ", ");
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", tag[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = tag[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ocb3_gen(void)
 | |
| {
 | |
| #ifdef LTC_OCB3_MODE
 | |
|    int err, kl, x, y1, z;
 | |
|    FILE *out;
 | |
|    unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
 | |
|                  plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("ocb3_tv.txt", "w");
 | |
|    fprintf(out, "OCB3 Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/plaintext/key.  The outputs\n"
 | |
|                 "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
 | |
|                 "step repeated sufficiently.  The nonce is fixed throughout. AAD is fixed to 3 bytes (ASCII) 'AAD'.\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 64 or 128 bit block sizes */
 | |
|       if (kl != 8 && kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "OCB-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* the key */
 | |
|       for (z = 0; z < kl; z++) {
 | |
|           key[z] = (z & 255);
 | |
|       }
 | |
| 
 | |
|       /* fixed nonce */
 | |
|       for (z = 0; z < cipher_descriptor[x].block_length; z++) {
 | |
|           nonce[z] = z;
 | |
|       }
 | |
| 
 | |
|       for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             plaintext[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(tag);
 | |
|          if ((err = ocb3_encrypt_authenticate_memory(x, key, kl, nonce, cipher_descriptor[x].block_length, (unsigned char*)"AAD", 3, plaintext, y1, plaintext, tag, &len)) != CRYPT_OK) {
 | |
|             printf("Error OCB'ing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y1);
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             fprintf(out, "%02X", plaintext[z]);
 | |
|          }
 | |
|          fprintf(out, ", ");
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", tag[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = tag[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void ccm_gen(void)
 | |
| {
 | |
| #ifdef LTC_CCM_MODE
 | |
|    int err, kl, x, y1, z;
 | |
|    FILE *out;
 | |
|    unsigned char key[MAXBLOCKSIZE], nonce[MAXBLOCKSIZE*2],
 | |
|                  plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("ccm_tv.txt", "w");
 | |
|    fprintf(out, "CCM Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key.  The outputs\n"
 | |
|                 "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
 | |
|                 "step repeated sufficiently.  The nonce is fixed throughout at 13 bytes 000102...\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 128 bit block sizes */
 | |
|       if (kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "CCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* the key */
 | |
|       for (z = 0; z < kl; z++) {
 | |
|           key[z] = (z & 255);
 | |
|       }
 | |
| 
 | |
|       /* fixed nonce */
 | |
|       for (z = 0; z < cipher_descriptor[x].block_length; z++) {
 | |
|           nonce[z] = z;
 | |
|       }
 | |
| 
 | |
|       for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             plaintext[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(tag);
 | |
|          if ((err = ccm_memory(x, key, kl, NULL, nonce, 13, plaintext, y1, plaintext, y1, plaintext, tag, &len, CCM_ENCRYPT)) != CRYPT_OK) {
 | |
|             printf("Error CCM'ing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y1);
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             fprintf(out, "%02X", plaintext[z]);
 | |
|          }
 | |
|          fprintf(out, ", ");
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", tag[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = tag[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void gcm_gen(void)
 | |
| {
 | |
| #ifdef LTC_GCM_MODE
 | |
|    int err, kl, x, y1, z;
 | |
|    FILE *out;
 | |
|    unsigned char key[MAXBLOCKSIZE], plaintext[MAXBLOCKSIZE*2], tag[MAXBLOCKSIZE];
 | |
|    unsigned long len;
 | |
| 
 | |
|    out = fopen("gcm_tv.txt", "w");
 | |
|    fprintf(out, "GCM Test Vectors.  Uses the 00010203...NN-1 pattern for nonce/header/plaintext/key.  The outputs\n"
 | |
|                 "are of the form ciphertext,tag for a given NN.  The key for step N>1 is the tag of the previous\n"
 | |
|                 "step repeated sufficiently.  The nonce is fixed throughout at 13 bytes 000102...\n\n");
 | |
| 
 | |
|    for (x = 0; cipher_descriptor[x].name != NULL; x++) {
 | |
|       kl = cipher_descriptor[x].block_length;
 | |
| 
 | |
|       /* skip ciphers which do not have 128 bit block sizes */
 | |
|       if (kl != 16) continue;
 | |
| 
 | |
|       if (cipher_descriptor[x].keysize(&kl) != CRYPT_OK) {
 | |
|          kl = cipher_descriptor[x].max_key_length;
 | |
|       }
 | |
|       fprintf(out, "GCM-%s (%d byte key)\n", cipher_descriptor[x].name, kl);
 | |
| 
 | |
|       /* the key */
 | |
|       for (z = 0; z < kl; z++) {
 | |
|           key[z] = (z & 255);
 | |
|       }
 | |
| 
 | |
|       for (y1 = 0; y1 <= (int)(cipher_descriptor[x].block_length*2); y1++){
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             plaintext[z] = (unsigned char)(z & 255);
 | |
|          }
 | |
|          len = sizeof(tag);
 | |
|          if ((err = gcm_memory(x, key, kl, plaintext, y1, plaintext, y1, plaintext, y1, plaintext, tag, &len, GCM_ENCRYPT)) != CRYPT_OK) {
 | |
|             printf("Error GCM'ing: %s\n", error_to_string(err));
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          if (len == 0) {
 | |
|             printf("Error GCM'ing: zero length\n");
 | |
|             exit(EXIT_FAILURE);
 | |
|          }
 | |
|          fprintf(out, "%3d: ", y1);
 | |
|          for (z = 0; z < y1; z++) {
 | |
|             fprintf(out, "%02X", plaintext[z]);
 | |
|          }
 | |
|          fprintf(out, ", ");
 | |
|          for (z = 0; z <(int)len; z++) {
 | |
|             fprintf(out, "%02X", tag[z]);
 | |
|          }
 | |
|          fprintf(out, "\n");
 | |
| 
 | |
|          /* forward the key */
 | |
|          for (z = 0; z < kl; z++) {
 | |
|              key[z] = tag[z % len];
 | |
|          }
 | |
|       }
 | |
|       fprintf(out, "\n");
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void base64_gen(void)
 | |
| {
 | |
|    FILE *out;
 | |
|    unsigned char dst[256], src[32], ch;
 | |
|    unsigned long x, len;
 | |
| 
 | |
|    out = fopen("base64_tv.txt", "w");
 | |
|    fprintf(out, "Base64 vectors.  These are the base64 encodings of the strings 00,01,02...NN-1\n\n");
 | |
|    for (x = 0; x <= 32; x++) {
 | |
|        for (ch = 0; ch < x; ch++) {
 | |
|            src[ch] = ch;
 | |
|        }
 | |
|        len = sizeof(dst);
 | |
|        base64_encode(src, x, dst, &len);
 | |
|        fprintf(out, "%2lu: %s\n", x, dst);
 | |
|    }
 | |
|    fclose(out);
 | |
| }
 | |
| 
 | |
| void math_gen(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| void ecc_gen(void)
 | |
| {
 | |
|    FILE         *out;
 | |
|    unsigned char str[512];
 | |
|    void          *k, *order, *modulus;
 | |
|    ecc_point    *G, *R;
 | |
|    int           x;
 | |
| 
 | |
|    out = fopen("ecc_tv.txt", "w");
 | |
|    fprintf(out, "ecc vectors.  These are for kG for k=1,3,9,27,...,3**n until k > order of the curve outputs are <k,x,y> triplets\n\n");
 | |
|    G = ltc_ecc_new_point();
 | |
|    R = ltc_ecc_new_point();
 | |
|    mp_init(&k);
 | |
|    mp_init(&order);
 | |
|    mp_init(&modulus);
 | |
| 
 | |
|    for (x = 0; ltc_ecc_sets[x].size != 0; x++) {
 | |
|         fprintf(out, "ECC-%d\n", ltc_ecc_sets[x].size*8);
 | |
|         mp_set(k, 1);
 | |
| 
 | |
|         mp_read_radix(order,   (char *)ltc_ecc_sets[x].order, 16);
 | |
|         mp_read_radix(modulus, (char *)ltc_ecc_sets[x].prime, 16);
 | |
|         mp_read_radix(G->x,    (char *)ltc_ecc_sets[x].Gx,    16);
 | |
|         mp_read_radix(G->y,    (char *)ltc_ecc_sets[x].Gy,    16);
 | |
|         mp_set(G->z, 1);
 | |
| 
 | |
|         while (mp_cmp(k, order) == LTC_MP_LT) {
 | |
|             ltc_mp.ecc_ptmul(k, G, R, modulus, 1);
 | |
|             mp_tohex(k,    (char*)str); fprintf(out, "%s, ", (char*)str);
 | |
|             mp_tohex(R->x, (char*)str); fprintf(out, "%s, ", (char*)str);
 | |
|             mp_tohex(R->y, (char*)str); fprintf(out, "%s\n", (char*)str);
 | |
|             mp_mul_d(k, 3, k);
 | |
|         }
 | |
|    }
 | |
|    mp_clear_multi(k, order, modulus, NULL);
 | |
|    ltc_ecc_del_point(G);
 | |
|    ltc_ecc_del_point(R);
 | |
|    fclose(out);
 | |
| }
 | |
| 
 | |
| void lrw_gen(void)
 | |
| {
 | |
| #ifdef LTC_LRW_MODE
 | |
|    FILE *out;
 | |
|    unsigned char tweak[16], key[16], iv[16], buf[1024];
 | |
|    int x, y, err;
 | |
|    symmetric_LRW lrw;
 | |
| 
 | |
|    /* initialize default key and tweak */
 | |
|    for (x = 0; x < 16; x++) {
 | |
|       tweak[x] = key[x] = iv[x] = x;
 | |
|    }
 | |
| 
 | |
|    out = fopen("lrw_tv.txt", "w");
 | |
|    for (x = 16; x < (int)(sizeof(buf)); x += 16) {
 | |
|        if ((err = lrw_start(find_cipher("aes"), iv, key, 16, tweak, 0, &lrw)) != CRYPT_OK) {
 | |
|           fprintf(stderr, "Error starting LRW-AES: %s\n", error_to_string(err));
 | |
|           exit(EXIT_FAILURE);
 | |
|        }
 | |
| 
 | |
|        /* encrypt incremental */
 | |
|        for (y = 0; y < x; y++) {
 | |
|            buf[y] = y & 255;
 | |
|        }
 | |
| 
 | |
|        if ((err = lrw_encrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
 | |
|           fprintf(stderr, "Error encrypting with LRW-AES: %s\n", error_to_string(err));
 | |
|           exit(EXIT_FAILURE);
 | |
|        }
 | |
| 
 | |
|        /* display it */
 | |
|        fprintf(out, "%d:", x);
 | |
|        for (y = 0; y < x; y++) {
 | |
|           fprintf(out, "%02x", buf[y]);
 | |
|        }
 | |
|        fprintf(out, "\n");
 | |
| 
 | |
|        /* reset IV */
 | |
|        if ((err = lrw_setiv(iv, 16, &lrw)) != CRYPT_OK) {
 | |
|           fprintf(stderr, "Error setting IV: %s\n", error_to_string(err));
 | |
|           exit(EXIT_FAILURE);
 | |
|        }
 | |
| 
 | |
|        /* copy new tweak, iv and key */
 | |
|        for (y = 0; y < 16; y++) {
 | |
|           key[y]   = buf[y];
 | |
|           iv[y]    = buf[(y+16)%x];
 | |
|           tweak[y] = buf[(y+32)%x];
 | |
|        }
 | |
| 
 | |
|        if ((err = lrw_decrypt(buf, buf, x, &lrw)) != CRYPT_OK) {
 | |
|           fprintf(stderr, "Error decrypting with LRW-AES: %s\n", error_to_string(err));
 | |
|           exit(EXIT_FAILURE);
 | |
|        }
 | |
| 
 | |
|        /* display it */
 | |
|        fprintf(out, "%d:", x);
 | |
|        for (y = 0; y < x; y++) {
 | |
|           fprintf(out, "%02x", buf[y]);
 | |
|        }
 | |
|        fprintf(out, "\n");
 | |
|        lrw_done(&lrw);
 | |
|    }
 | |
|    fclose(out);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|    register_all_ciphers();
 | |
|    register_all_hashes();
 | |
|    register_all_prngs();
 | |
| #ifdef USE_LTM
 | |
|    ltc_mp = ltm_desc;
 | |
| #elif defined(USE_TFM)
 | |
|    ltc_mp = tfm_desc;
 | |
| #elif defined(USE_GMP)
 | |
|    ltc_mp = gmp_desc;
 | |
| #elif defined(EXT_MATH_LIB)
 | |
|    extern ltc_math_descriptor EXT_MATH_LIB;
 | |
|    ltc_mp = EXT_MATH_LIB;
 | |
| #else
 | |
|    fprintf(stderr, "No MPI provider available\n");
 | |
|    exit(EXIT_FAILURE);
 | |
| #endif
 | |
| 
 | |
|    printf("Generating hash   vectors..."); fflush(stdout); hash_gen();   printf("done\n");
 | |
|    printf("Generating cipher vectors..."); fflush(stdout); cipher_gen(); printf("done\n");
 | |
|    printf("Generating HMAC   vectors..."); fflush(stdout); hmac_gen();   printf("done\n");
 | |
| #ifdef LTC_OMAC
 | |
|    printf("Generating OMAC   vectors..."); fflush(stdout); omac_gen();   printf("done\n");
 | |
| #endif
 | |
| #ifdef LTC_PMAC
 | |
|    printf("Generating PMAC   vectors..."); fflush(stdout); pmac_gen();   printf("done\n");
 | |
| #endif
 | |
| #ifdef LTC_EAX_MODE
 | |
|    printf("Generating EAX    vectors..."); fflush(stdout); eax_gen();    printf("done\n");
 | |
| #endif
 | |
| #ifdef LTC_OCB_MODE
 | |
|    printf("Generating OCB    vectors..."); fflush(stdout); ocb_gen();    printf("done\n");
 | |
| #endif
 | |
| #ifdef LTC_OCB3_MODE
 | |
|    printf("Generating OCB3   vectors..."); fflush(stdout); ocb3_gen();   printf("done\n");
 | |
| #endif
 | |
| #ifdef LTC_CCM_MODE
 | |
|    printf("Generating CCM    vectors..."); fflush(stdout); ccm_gen();    printf("done\n");
 | |
| #endif
 | |
| #ifdef LTC_GCM_MODE
 | |
|    printf("Generating GCM    vectors..."); fflush(stdout); gcm_gen();    printf("done\n");
 | |
| #endif
 | |
|    printf("Generating BASE64 vectors..."); fflush(stdout); base64_gen(); printf("done\n");
 | |
|    printf("Generating MATH   vectors..."); fflush(stdout); math_gen();   printf("done\n");
 | |
|    printf("Generating ECC    vectors..."); fflush(stdout); ecc_gen();    printf("done\n");
 | |
| #ifdef LTC_LRW_MODE
 | |
|    printf("Generating LRW    vectors..."); fflush(stdout); lrw_gen();    printf("done\n");
 | |
| #endif
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |