405 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			405 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| int dh_encrypt_key(const unsigned char *inkey, unsigned long keylen,
 | |
|                          unsigned char *out,  unsigned long *len,
 | |
|                          prng_state *prng, int wprng, int hash,
 | |
|                          dh_key *key)
 | |
| {
 | |
|     unsigned char pub_expt[768], dh_shared[768], skey[MAXBLOCKSIZE];
 | |
|     dh_key pubkey;
 | |
|     unsigned long x, y, z, hashsize, pubkeysize;
 | |
|     int err;
 | |
| 
 | |
|     _ARGCHK(inkey != NULL);
 | |
|     _ARGCHK(out != NULL);
 | |
|     _ARGCHK(len != NULL);
 | |
|     _ARGCHK(key != NULL);
 | |
| 
 | |
|     /* check that wprng/hash are not invalid */
 | |
|     if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
 | |
|        return err;
 | |
|     }
 | |
| 
 | |
|     if ((err = hash_is_valid(hash)) != CRYPT_OK) {
 | |
|        return err;
 | |
|     }
 | |
| 
 | |
|     if (keylen > hash_descriptor[hash].hashsize)  {
 | |
|         return CRYPT_INVALID_ARG;
 | |
|     }
 | |
| 
 | |
|     /* make a random key and export the public copy */
 | |
|     if ((err = dh_make_key(prng, wprng, dh_get_size(key), &pubkey)) != CRYPT_OK) {
 | |
|        return err;
 | |
|     }
 | |
| 
 | |
|     pubkeysize = sizeof(pub_expt);
 | |
|     if ((err = dh_export(pub_expt, &pubkeysize, PK_PUBLIC, &pubkey)) != CRYPT_OK) {
 | |
|        dh_free(&pubkey);
 | |
|        return err;
 | |
|     }
 | |
| 
 | |
|     /* now check if the out buffer is big enough */
 | |
|     if (*len < (9 + PACKET_SIZE + pubkeysize + keylen)) {
 | |
|        dh_free(&pubkey);
 | |
|        return CRYPT_BUFFER_OVERFLOW;
 | |
|     }
 | |
| 
 | |
|     /* make random key */
 | |
|     hashsize  = hash_descriptor[hash].hashsize;
 | |
| 
 | |
|     x = (unsigned long)sizeof(dh_shared);
 | |
|     if ((err = dh_shared_secret(&pubkey, key, dh_shared, &x)) != CRYPT_OK) {
 | |
|        dh_free(&pubkey);
 | |
|        return err;
 | |
|     }
 | |
|     dh_free(&pubkey);
 | |
| 
 | |
|     z = sizeof(skey);
 | |
|     if ((err = hash_memory(hash, dh_shared, x, skey, &z)) != CRYPT_OK) {
 | |
|        return err;
 | |
|     }
 | |
| 
 | |
|     /* output header */
 | |
|     y = PACKET_SIZE;
 | |
| 
 | |
|     /* size of hash name and the name itself */
 | |
|     out[y++] = hash_descriptor[hash].ID;
 | |
| 
 | |
|     /* length of DH pubkey and the key itself */
 | |
|     STORE32L(pubkeysize, out+y);
 | |
|     y += 4;
 | |
|     for (x = 0; x < pubkeysize; x++, y++) {
 | |
|         out[y] = pub_expt[x];
 | |
|     }
 | |
| 
 | |
|     /* Store the encrypted key */
 | |
|     STORE32L(keylen, out+y);
 | |
|     y += 4;
 | |
| 
 | |
|     for (x = 0; x < keylen; x++, y++) {
 | |
|       out[y] = skey[x] ^ inkey[x];
 | |
|     }
 | |
| 
 | |
|     /* store header */
 | |
|     packet_store_header(out, PACKET_SECT_DH, PACKET_SUB_ENC_KEY);
 | |
| 
 | |
| #ifdef CLEAN_STACK
 | |
|     /* clean up */
 | |
|     zeromem(pub_expt, sizeof(pub_expt));
 | |
|     zeromem(dh_shared, sizeof(dh_shared));
 | |
|     zeromem(skey, sizeof(skey));
 | |
| #endif
 | |
| 
 | |
|     *len = y;
 | |
|     return CRYPT_OK;
 | |
| }
 | |
| 
 | |
| int dh_decrypt_key(const unsigned char *in, unsigned long inlen,
 | |
|                          unsigned char *outkey, unsigned long *keylen, 
 | |
|                          dh_key *key)
 | |
| {
 | |
|    unsigned char shared_secret[768], skey[MAXBLOCKSIZE];
 | |
|    unsigned long x, y, z,hashsize, keysize;
 | |
|    int res, hash, err;
 | |
|    dh_key pubkey;
 | |
| 
 | |
|    _ARGCHK(in != NULL);
 | |
|    _ARGCHK(outkey != NULL);
 | |
|    _ARGCHK(keylen != NULL);
 | |
|    _ARGCHK(key != NULL);
 | |
| 
 | |
|    /* right key type? */
 | |
|    if (key->type != PK_PRIVATE) {
 | |
|       return CRYPT_PK_NOT_PRIVATE;
 | |
|    }
 | |
| 
 | |
|    /* check if initial header should fit */
 | |
|    if (inlen < PACKET_SIZE+1+4+4) {
 | |
|       return CRYPT_INVALID_PACKET;
 | |
|    } else {
 | |
|       inlen -= PACKET_SIZE+1+4+4;
 | |
|    }
 | |
| 
 | |
|    /* is header correct? */
 | |
|    if ((err = packet_valid_header((unsigned char *)in, PACKET_SECT_DH, PACKET_SUB_ENC_KEY)) != CRYPT_OK)  {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    /* now lets get the hash name */
 | |
|    y = PACKET_SIZE;
 | |
|    hash = find_hash_id(in[y++]);
 | |
|    if (hash == -1) {
 | |
|       return CRYPT_INVALID_HASH;
 | |
|    }
 | |
| 
 | |
|    /* common values */
 | |
|    hashsize  = hash_descriptor[hash].hashsize;
 | |
| 
 | |
|    /* get public key */
 | |
|    LOAD32L(x, in+y);
 | |
|    
 | |
|    /* now check if the imported key will fit */
 | |
|    if (inlen < x) {
 | |
|       return CRYPT_INVALID_PACKET;
 | |
|    } else {
 | |
|       inlen -= x;
 | |
|    }
 | |
|    
 | |
|    y += 4;
 | |
|    if ((err = dh_import(in+y, x, &pubkey)) != CRYPT_OK) {
 | |
|       return err;
 | |
|    }
 | |
|    y += x;
 | |
| 
 | |
|    /* make shared key */
 | |
|    x = (unsigned long)sizeof(shared_secret);
 | |
|    if ((err = dh_shared_secret(key, &pubkey, shared_secret, &x)) != CRYPT_OK) {
 | |
|       dh_free(&pubkey);
 | |
|       return err;
 | |
|    }
 | |
|    dh_free(&pubkey);
 | |
| 
 | |
|    z = sizeof(skey);
 | |
|    if ((err = hash_memory(hash, shared_secret, x, skey, &z)) != CRYPT_OK) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    /* load in the encrypted key */
 | |
|    LOAD32L(keysize, in+y);
 | |
|    
 | |
|    /* will the outkey fit as part of the input */
 | |
|    if (inlen < keysize) {
 | |
|       return CRYPT_INVALID_PACKET;
 | |
|    } else {
 | |
|       inlen -= keysize;
 | |
|    }
 | |
|    
 | |
|    if (keysize > *keylen) {
 | |
|        res = CRYPT_BUFFER_OVERFLOW;
 | |
|        goto done;
 | |
|    }
 | |
|    y += 4;
 | |
| 
 | |
|    *keylen = keysize;
 | |
| 
 | |
|    for (x = 0; x < keysize; x++, y++) {
 | |
|       outkey[x] = skey[x] ^ in[y];
 | |
|    }
 | |
| 
 | |
|    res = CRYPT_OK;
 | |
| done:
 | |
| #ifdef CLEAN_STACK
 | |
|    zeromem(shared_secret, sizeof(shared_secret));
 | |
|    zeromem(skey, sizeof(skey));
 | |
| #endif
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| /* perform an ElGamal Signature of a hash 
 | |
|  *
 | |
|  * The math works as follows.  x is the private key, M is the message to sign
 | |
|  
 | |
|  1.  pick a random k
 | |
|  2.  compute a = g^k mod p
 | |
|  3.  compute b = (M - xa)/k mod p
 | |
|  4.  Send (a,b)
 | |
|  
 | |
|  Now to verify with y=g^x mod p, a and b
 | |
|  
 | |
|  1.  compute y^a * a^b = g^(xa) * g^(k*(M-xa)/k)
 | |
|                        = g^(xa + (M - xa))
 | |
|                        = g^M [all mod p]
 | |
|                        
 | |
|  2.  Compare against g^M mod p [based on input hash].
 | |
|  3.  If result of #2 == result of #1 then signature valid 
 | |
| */
 | |
| int dh_sign_hash(const unsigned char *in,  unsigned long inlen,
 | |
|                        unsigned char *out, unsigned long *outlen,
 | |
|                        prng_state *prng, int wprng, dh_key *key)
 | |
| {
 | |
|    mp_int a, b, k, m, g, p, p1, tmp;
 | |
|    unsigned char buf[1536];
 | |
|    unsigned long x, y;
 | |
|    int res, err;
 | |
| 
 | |
|    _ARGCHK(in != NULL);
 | |
|    _ARGCHK(out != NULL);
 | |
|    _ARGCHK(outlen != NULL);
 | |
|    _ARGCHK(key != NULL);
 | |
| 
 | |
|    /* check parameters */
 | |
|    if (key->type != PK_PRIVATE) {
 | |
|       return CRYPT_PK_NOT_PRIVATE;
 | |
|    }
 | |
| 
 | |
|    if ((err = prng_is_valid(wprng)) != CRYPT_OK) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    /* is the IDX valid ?  */
 | |
|    if (is_valid_idx(key->idx) != 1) {
 | |
|       return CRYPT_PK_INVALID_TYPE;
 | |
|    }
 | |
| 
 | |
|    /* make up a random value k,
 | |
|     * since the order of the group is prime
 | |
|     * we need not check if gcd(k, r) is 1 
 | |
|     */
 | |
|    if (prng_descriptor[wprng].read(buf, sets[key->idx].size, prng) != 
 | |
|        (unsigned long)(sets[key->idx].size)) {
 | |
|       return CRYPT_ERROR_READPRNG;
 | |
|    }
 | |
| 
 | |
|    /* init bignums */
 | |
|    if (mp_init_multi(&a, &b, &k, &m, &p, &g, &p1, &tmp, NULL) != MP_OKAY) { 
 | |
|       return CRYPT_MEM;
 | |
|    }
 | |
| 
 | |
|    /* load k and m */
 | |
|    if (mp_read_unsigned_bin(&m, (unsigned char *)in, inlen) != MP_OKAY)        { goto error; }
 | |
| #ifdef FAST_PK   
 | |
|    if (mp_read_unsigned_bin(&k, buf, MIN(32,sets[key->idx].size)) != MP_OKAY)  { goto error; }
 | |
| #else   
 | |
|    if (mp_read_unsigned_bin(&k, buf, sets[key->idx].size) != MP_OKAY)          { goto error; }
 | |
| #endif  
 | |
| 
 | |
|    /* load g, p and p1 */
 | |
|    if (mp_read_radix(&g, sets[key->idx].base, 64) != MP_OKAY)               { goto error; }
 | |
|    if (mp_read_radix(&p, sets[key->idx].prime, 64) != MP_OKAY)              { goto error; }
 | |
|    if (mp_sub_d(&p, 1, &p1) != MP_OKAY)                                     { goto error; }
 | |
|    if (mp_div_2(&p1, &p1) != MP_OKAY)                                       { goto error; } /* p1 = (p-1)/2 */
 | |
| 
 | |
|    /* now get a = g^k mod p */
 | |
|    if (mp_exptmod(&g, &k, &p, &a) != MP_OKAY)                               { goto error; }
 | |
| 
 | |
|    /* now find M = xa + kb mod p1 or just b = (M - xa)/k mod p1 */
 | |
|    if (mp_invmod(&k, &p1, &k) != MP_OKAY)                                   { goto error; } /* k = 1/k mod p1 */
 | |
|    if (mp_mulmod(&a, &key->x, &p1, &tmp) != MP_OKAY)                        { goto error; } /* tmp = xa */
 | |
|    if (mp_submod(&m, &tmp, &p1, &tmp) != MP_OKAY)                           { goto error; } /* tmp = M - xa */
 | |
|    if (mp_mulmod(&k, &tmp, &p1, &b) != MP_OKAY)                             { goto error; } /* b = (M - xa)/k */
 | |
| 
 | |
|    /* store header  */
 | |
|    y = PACKET_SIZE;
 | |
| 
 | |
|    /* now store them both (a,b) */
 | |
|    x = (unsigned long)mp_unsigned_bin_size(&a);
 | |
|    STORE32L(x, buf+y);  y += 4;
 | |
|    mp_to_unsigned_bin(&a, buf+y); y += x;
 | |
| 
 | |
|    x = (unsigned long)mp_unsigned_bin_size(&b);
 | |
|    STORE32L(x, buf+y);  y += 4;
 | |
|    mp_to_unsigned_bin(&b, buf+y); y += x;
 | |
| 
 | |
|    /* check if size too big */
 | |
|    if (*outlen < y) {
 | |
|       res = CRYPT_BUFFER_OVERFLOW;
 | |
|       goto done;
 | |
|    }
 | |
| 
 | |
|    /* store header */
 | |
|    packet_store_header(buf, PACKET_SECT_DH, PACKET_SUB_SIGNED);
 | |
| 
 | |
|    /* store it */
 | |
|    memcpy(out, buf, (size_t)y);
 | |
|    *outlen = y;
 | |
| #ifdef CLEAN_STACK
 | |
|    zeromem(buf, sizeof(buf));
 | |
| #endif
 | |
| 
 | |
|    res = CRYPT_OK;
 | |
|    goto done;
 | |
| error:
 | |
|    res = CRYPT_MEM;
 | |
| done:
 | |
|    mp_clear_multi(&tmp, &p1, &g, &p, &m, &k, &b, &a, NULL);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| int dh_verify_hash(const unsigned char *sig, unsigned long siglen,
 | |
|                    const unsigned char *hash, unsigned long hashlen, 
 | |
|                          int *stat, dh_key *key)
 | |
| {
 | |
|    mp_int a, b, p, g, m, tmp;
 | |
|    unsigned long x, y;
 | |
|    int res, err;
 | |
| 
 | |
|    _ARGCHK(sig != NULL);
 | |
|    _ARGCHK(hash != NULL);
 | |
|    _ARGCHK(stat != NULL);
 | |
|    _ARGCHK(key != NULL);
 | |
| 
 | |
|    /* default to invalid */
 | |
|    *stat = 0;
 | |
| 
 | |
|    /* check initial input length */
 | |
|    if (siglen < PACKET_SIZE+4+4) {
 | |
|       return CRYPT_INVALID_PACKET;
 | |
|    } else {
 | |
|       siglen -= PACKET_SIZE + 4 + 4;
 | |
|    }
 | |
| 
 | |
|    /* header ok? */
 | |
|    if ((err = packet_valid_header((unsigned char *)sig, PACKET_SECT_DH, PACKET_SUB_SIGNED)) != CRYPT_OK) {
 | |
|       return err;
 | |
|    }
 | |
|    
 | |
|    /* get hash out of packet */
 | |
|    y = PACKET_SIZE;
 | |
| 
 | |
|    /* init all bignums */
 | |
|    if (mp_init_multi(&a, &p, &b, &g, &m, &tmp, NULL) != MP_OKAY) { 
 | |
|       return CRYPT_MEM;
 | |
|    }
 | |
| 
 | |
|    /* load a and b */
 | |
|    LOAD32L(x, sig+y);
 | |
|    if (siglen < x) {
 | |
|       return CRYPT_INVALID_PACKET;
 | |
|    } else {
 | |
|       siglen -= x;
 | |
|    }
 | |
|    
 | |
|    y += 4;
 | |
|    if (mp_read_unsigned_bin(&a, (unsigned char *)sig+y, x) != MP_OKAY)    { goto error; }
 | |
|    y += x;
 | |
| 
 | |
|    LOAD32L(x, sig+y);
 | |
|    if (siglen < x) {
 | |
|       return CRYPT_INVALID_PACKET;
 | |
|    } else {
 | |
|       siglen -= x;
 | |
|    }
 | |
|    y += 4;
 | |
|    if (mp_read_unsigned_bin(&b, (unsigned char *)sig+y, x) != MP_OKAY)   { goto error; }
 | |
|    y += x;
 | |
| 
 | |
|    /* load p and g */
 | |
|    if (mp_read_radix(&p, sets[key->idx].prime, 64) != MP_OKAY)           { goto error; }
 | |
|    if (mp_read_radix(&g, sets[key->idx].base, 64) != MP_OKAY)            { goto error; }
 | |
| 
 | |
|    /* load m */
 | |
|    if (mp_read_unsigned_bin(&m, (unsigned char *)hash, hashlen) != MP_OKAY) { goto error; }
 | |
| 
 | |
|    /* find g^m mod p */
 | |
|    if (mp_exptmod(&g, &m, &p, &m) != MP_OKAY)                            { goto error; } /* m = g^m mod p */
 | |
| 
 | |
|    /* find y^a * a^b */
 | |
|    if (mp_exptmod(&key->y, &a, &p, &tmp) != MP_OKAY)                     { goto error; } /* tmp = y^a mod p */
 | |
|    if (mp_exptmod(&a, &b, &p, &a) != MP_OKAY)                            { goto error; } /* a = a^b mod p */
 | |
|    if (mp_mulmod(&a, &tmp, &p, &a) != MP_OKAY)                           { goto error; } /* a = y^a * a^b mod p */
 | |
| 
 | |
|    /* y^a * a^b == g^m ??? */
 | |
|    if (mp_cmp(&a, &m) == 0) {
 | |
|       *stat = 1;
 | |
|    }
 | |
| 
 | |
|    /* clean up */
 | |
|    res = CRYPT_OK;
 | |
|    goto done;
 | |
| error:
 | |
|    res = CRYPT_MEM;
 | |
| done:
 | |
|    mp_clear_multi(&tmp, &m, &g, &p, &b, &a, NULL);
 | |
|    return res;
 | |
| }
 | |
| 
 |