296 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			296 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* polynomial basis GF(2^w) routines */
 | |
| #include "mycrypt.h"
 | |
| 
 | |
| #ifdef GF
 | |
| 
 | |
| #define FORLOOP for (i = 0; i < LSIZE; i++) 
 | |
| 
 | |
| /* c = a + b */
 | |
| void gf_add(gf_intp a, gf_intp b, gf_intp c)
 | |
| {
 | |
|    int i;
 | |
|    FORLOOP c[i] = a[i]^b[i];
 | |
| }
 | |
| 
 | |
| /* b = a */
 | |
| void gf_copy(gf_intp a, gf_intp b)
 | |
| {
 | |
|    int i;
 | |
|    FORLOOP b[i] = a[i];
 | |
| }
 | |
| 
 | |
| /* a = 0 */
 | |
| void gf_zero(gf_intp a)
 | |
| {
 | |
|    int i;
 | |
|    FORLOOP a[i] = 0;
 | |
| }
 | |
| 
 | |
| /* is a zero? */
 | |
| int gf_iszero(gf_intp a)
 | |
| {
 | |
|    int i;
 | |
|    FORLOOP if (a[i]) {
 | |
|       return 0;
 | |
|    }
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| /* is a one? */
 | |
| int gf_isone(gf_intp a)
 | |
| { 
 | |
|    int i;
 | |
|    for (i = 1; i < LSIZE; i++) {
 | |
|        if (a[i]) {
 | |
|           return 0;
 | |
|        }
 | |
|    }
 | |
|    return a[0] == 1;
 | |
| }
 | |
| 
 | |
| /* b = a << 1*/
 | |
| void gf_shl(gf_intp a, gf_intp b)
 | |
| {
 | |
|    int i;
 | |
|    gf_int tmp;
 | |
| 
 | |
|    gf_copy(a, tmp);
 | |
|    for (i = LSIZE-1; i > 0; i--) 
 | |
|        b[i] = ((tmp[i]<<1)|((tmp[i-1]&0xFFFFFFFFUL)>>31))&0xFFFFFFFFUL;
 | |
|    b[0] = (tmp[0] << 1)&0xFFFFFFFFUL;
 | |
|    gf_zero(tmp);
 | |
| }
 | |
| 
 | |
| /* b = a >> 1 */
 | |
| void gf_shr(gf_intp a, gf_intp b)
 | |
| {
 | |
|    int i;
 | |
|    gf_int tmp;
 | |
| 
 | |
|    gf_copy(a, tmp);
 | |
|    for (i = 0; i < LSIZE-1; i++)
 | |
|        b[i] = (((tmp[i]&0xFFFFFFFFUL)>>1)|(tmp[i+1]<<31))&0xFFFFFFFFUL;
 | |
|    b[LSIZE-1] = (tmp[LSIZE-1]&0xFFFFFFFFUL)>>1;
 | |
|    gf_zero(tmp);
 | |
| }
 | |
| 
 | |
| /* returns -1 if its zero, otherwise degree of a */
 | |
| int gf_deg(gf_intp a)
 | |
| {
 | |
|    int i, ii;
 | |
|    unsigned long t;
 | |
| 
 | |
|    ii = -1;
 | |
|    for (i = LSIZE-1; i >= 0; i--)
 | |
|        if (a[i]) {
 | |
|           for (t = a[i], ii = 0; t; t >>= 1, ++ii);
 | |
|           break;
 | |
|        }
 | |
|    if (i == -1) i = 0;
 | |
|    return (i<<5)+ii;
 | |
| }
 | |
| 
 | |
| /* c = ab */
 | |
| void gf_mul(gf_intp a, gf_intp b, gf_intp c)
 | |
| {
 | |
|    gf_int ta, tb;
 | |
|    int i, n;
 | |
| 
 | |
|    gf_copy(a, ta);
 | |
|    gf_copy(b, tb);
 | |
|    gf_zero(c);
 | |
|    n = gf_deg(ta)+1;
 | |
|    for (i = 0; i < n; i++) {
 | |
|        if (ta[i>>5]&(1<<(i&31)))
 | |
|           gf_add(c, tb, c);
 | |
|        gf_shl(tb, tb);
 | |
|    }
 | |
|    gf_zero(ta);
 | |
|    gf_zero(tb);
 | |
| }
 | |
| 
 | |
| /* q = a/b, r = a%b */
 | |
| void gf_div(gf_intp a, gf_intp b, gf_intp q, gf_intp r)
 | |
| {
 | |
|    gf_int ta, tb, shifts[LSIZE*32];
 | |
|    int i, magb, mag;
 | |
| 
 | |
|    mag  = gf_deg(a);
 | |
|    magb = gf_deg(b);
 | |
| 
 | |
|    /* special cases */
 | |
|    if (magb > mag) {
 | |
|       gf_copy(a, r);
 | |
|       gf_zero(q);
 | |
|       return;
 | |
|    }
 | |
|    if (magb == -1) {
 | |
|       return;
 | |
|    }
 | |
| 
 | |
|    /* copy locally */
 | |
|    gf_copy(a, ta);
 | |
|    gf_copy(b, tb);
 | |
|    gf_zero(q);
 | |
| 
 | |
|    /* make shifted versions of "b" */
 | |
|    gf_copy(tb, shifts[0]);
 | |
|    for (i = 1; i <= (mag-magb); i++) 
 | |
|        gf_shl(shifts[i-1], shifts[i]);
 | |
| 
 | |
|    while (mag >= magb) {
 | |
|        i = (mag - magb);
 | |
|        q[i>>5] |= (1<<(i&31));
 | |
|        gf_add(ta, shifts[i], ta);
 | |
|        mag = gf_deg(ta);
 | |
|    }
 | |
|    gf_copy(ta, r);
 | |
|    gf_zero(ta);
 | |
|    gf_zero(tb);
 | |
|    zeromem(shifts, sizeof(shifts));
 | |
| }
 | |
| 
 | |
| /* b = a mod m */
 | |
| void gf_mod(gf_intp a, gf_intp m, gf_intp b)
 | |
| {
 | |
|    gf_int tmp;
 | |
|    gf_div(a,m,tmp,b);
 | |
|    gf_zero(tmp);
 | |
| }
 | |
| 
 | |
| /* c = ab (mod m) */
 | |
| void gf_mulmod(gf_intp a, gf_intp b, gf_intp m, gf_intp c)
 | |
| {
 | |
|    gf_int tmp;
 | |
|    gf_mul(a, b, tmp);
 | |
|    gf_mod(tmp, m, c);
 | |
|    gf_zero(tmp);
 | |
| }
 | |
| 
 | |
| /* B = 1/A mod M */
 | |
| void gf_invmod(gf_intp A, gf_intp M, gf_intp B)
 | |
| {
 | |
|   gf_int m, n, p0, p1, p2, r, q, tmp;
 | |
| 
 | |
|   /* put all variables in known setup state */
 | |
|   gf_zero(p0);
 | |
|   gf_zero(p2);
 | |
|   gf_copy(M, m);
 | |
|   gf_copy(A, n);
 | |
|   p0[0] = 1;
 | |
|   gf_div(m, n, p1, r);
 | |
|   gf_copy(p1, q);
 | |
| 
 | |
|   /* loop until r == 0 */
 | |
|   while (!gf_iszero(r)) {
 | |
|      gf_copy(n, m);
 | |
|      gf_copy(r, n);
 | |
|      gf_div(m, n, q, r);
 | |
|      gf_mul(q, p1, tmp);
 | |
|      gf_add(tmp, p0, p2);
 | |
|      gf_copy(p1, p0);
 | |
|      gf_copy(p2, p1);
 | |
|   }
 | |
|   gf_copy(p0, B);
 | |
|   gf_zero(p0);
 | |
| }
 | |
| 
 | |
| /* find a square root modulo a prime.  Note the number of 
 | |
|  * elements is 2^k - 1, so we must square k-2 times to get the
 | |
|  * square root.. 
 | |
|  */
 | |
| void gf_sqrt(gf_intp a, gf_intp M, gf_intp b)
 | |
| {
 | |
|    int k;
 | |
|    k = gf_deg(M)-2;
 | |
|    gf_copy(a, b);
 | |
|    while (k--)
 | |
|       gf_mulmod(b, b, M, b);
 | |
| }
 | |
| 
 | |
| /* c = gcd(A,B) */
 | |
| void gf_gcd(gf_intp A, gf_intp B, gf_intp c)
 | |
| {
 | |
|    gf_int a, b, r;
 | |
|    int n;
 | |
| 
 | |
|    gf_add(A, B, r);
 | |
|    n = gf_deg(r);
 | |
|    if (gf_deg(A) > n) {
 | |
|       gf_copy(A, a);
 | |
|       gf_copy(B, b);
 | |
|    } else {
 | |
|       gf_copy(A, b);
 | |
|       gf_copy(B, a);
 | |
|    }
 | |
| 
 | |
|    do {
 | |
|       gf_mod(a, b, r);
 | |
|       gf_copy(b, a);
 | |
|       gf_copy(r, b);
 | |
|    } while (!gf_iszero(r));
 | |
|    gf_copy(a, c);
 | |
|    gf_zero(a);
 | |
|    gf_zero(b);
 | |
| }
 | |
| 
 | |
| /* returns non-zero if 'a' is irreducible */
 | |
| int gf_is_prime(gf_intp a)
 | |
| {
 | |
|    gf_int u, tmp;
 | |
|    int m, n;
 | |
| 
 | |
|    gf_zero(u);
 | |
|    u[0] = 2;			/* u(x) = x */
 | |
|    m = gf_deg(a);
 | |
|    for (n = 0; n < (m/2); n++) { 
 | |
|        gf_mulmod(u, u, a, u);   /* u(x) = u(x)^2 mod a(x) */
 | |
|        gf_copy(u, tmp);
 | |
|        tmp[0] ^= 2;		/* tmp(x) = u(x) - x */
 | |
|        gf_gcd(tmp, a, tmp);     /* tmp(x) = gcd(a(x), u(x) - x) */
 | |
|        if (!gf_isone(tmp)) {
 | |
|           return 0;
 | |
|        }
 | |
|    }
 | |
|    return 1;
 | |
| }  
 | |
| 
 | |
| /* returns bytes required to store a gf_int */
 | |
| int gf_size(gf_intp a)
 | |
| {
 | |
|    int n;
 | |
| 
 | |
|    n = gf_deg(a);
 | |
|    if (n == -1) {
 | |
|       return 4;
 | |
|    }
 | |
|    n = n + (32 - (n&31));
 | |
|    return n/8;
 | |
| }
 | |
| 
 | |
| /* store a gf_int */
 | |
| void gf_toraw(gf_intp a, unsigned char *dst)
 | |
| {
 | |
|    int x, n;
 | |
|    n = gf_size(a)/4;
 | |
|    for (x = 0; x < n; x++) {
 | |
|        STORE32L(a[x], dst);
 | |
|        dst += 4;
 | |
|    }
 | |
| }
 | |
| 
 | |
| /* read a gf_int (len == in bytes) */
 | |
| void gf_readraw(gf_intp a, unsigned char *str, int len)
 | |
| {
 | |
|    int x;
 | |
|    gf_zero(a);
 | |
|    for (x = 0; x < len/4; x++) {
 | |
|        LOAD32L(a[x], str);
 | |
|        str += 4;
 | |
|    }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 |