7075 lines
		
	
	
		
			172 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7075 lines
		
	
	
		
			172 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Start: bn_fast_mp_invmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include "mycrypt.h"
 | |
| 
 | |
| /* computes the modular inverse via binary extended euclidean algorithm, 
 | |
|  * that is c = 1/a mod b 
 | |
|  *
 | |
|  * Based on mp_invmod except this is optimized for the case where b is 
 | |
|  * odd as per HAC Note 14.64 on pp. 610
 | |
|  */
 | |
| int
 | |
| fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x, y, u, v, B, D;
 | |
|   int     res, neg;
 | |
| 
 | |
|   /* init all our temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x == modulus, y == value to invert */
 | |
|   if ((res = mp_copy (b, &x)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* we need y = |a| */
 | |
|   if ((res = mp_abs (a, &y)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* 2. [modified] if x,y are both even then return an error! 
 | |
|    * 
 | |
|    * That is if gcd(x,y) = 2 * k then obviously there is no inverse.
 | |
|    */
 | |
|   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
 | |
|     res = MP_VAL;
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
|   mp_set (&D, 1);
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven (&u) == 1) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|     /* 4.2 if A or B is odd then */
 | |
|     if (mp_iseven (&B) == 0) {
 | |
|       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | |
|         goto __ERR;
 | |
|       }
 | |
|     }
 | |
|     /* B = B/2 */
 | |
|     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven (&v) == 1) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|     /* 5.2 if C,D are even then */
 | |
|     if (mp_iseven (&D) == 0) {
 | |
|       /* D = (D-x)/2 */
 | |
|       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | |
|         goto __ERR;
 | |
|       }
 | |
|     }
 | |
|     /* D = D/2 */
 | |
|     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp (&u, &v) != MP_LT) {
 | |
|     /* u = u - v, B = B - D */
 | |
|     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, D = D - B */
 | |
|     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero (&u) == 0) {
 | |
|     goto top;
 | |
|   }
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* b is now the inverse */
 | |
|   neg = a->sign;
 | |
|   while (D.sign == MP_NEG) {
 | |
|     if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
|   mp_exch (&D, c);
 | |
|   c->sign = neg;
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_fast_mp_invmod.c */
 | |
| 
 | |
| /* Start: bn_fast_mp_montgomery_reduce.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction 
 | |
|  * 
 | |
|  * This is an optimized implementation of mp_montgomery_reduce 
 | |
|  * which uses the comba method to quickly calculate the columns of the
 | |
|  * reduction.  
 | |
|  *
 | |
|  * Based on Algorithm 14.32 on pp.601 of HAC.
 | |
| */
 | |
| int
 | |
| fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 | |
| {
 | |
|   int     ix, res, olduse;
 | |
|   mp_word W[MP_WARRAY];
 | |
| 
 | |
|   /* get old used count */
 | |
|   olduse = x->used;
 | |
| 
 | |
|   /* grow a as required */
 | |
|   if (x->alloc < n->used + 1) {
 | |
|     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_word *_W;
 | |
|     register mp_digit *tmpx;
 | |
| 
 | |
|     _W = W;
 | |
|     tmpx = x->dp;
 | |
| 
 | |
|     /* copy the digits of a into W[0..a->used-1] */
 | |
|     for (ix = 0; ix < x->used; ix++) {
 | |
|       *_W++ = *tmpx++;
 | |
|     }
 | |
| 
 | |
|     /* zero the high words of W[a->used..m->used*2] */
 | |
|     for (; ix < n->used * 2 + 1; ix++) {
 | |
|       *_W++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < n->used; ix++) {
 | |
|     /* mu = ai * m' mod b
 | |
|      *
 | |
|      * We avoid a double precision multiplication (which isn't required)
 | |
|      * by casting the value down to a mp_digit.  Note this requires 
 | |
|      * that W[ix-1] have  the carry cleared (see after the inner loop)
 | |
|      */
 | |
|     register mp_digit mu;
 | |
|     mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
 | |
| 
 | |
|     /* a = a + mu * m * b**i
 | |
|      *
 | |
|      * This is computed in place and on the fly.  The multiplication
 | |
|      * by b**i is handled by offseting which columns the results
 | |
|      * are added to.
 | |
|      *
 | |
|      * Note the comba method normally doesn't handle carries in the 
 | |
|      * inner loop In this case we fix the carry from the previous 
 | |
|      * column since the Montgomery reduction requires digits of the 
 | |
|      * result (so far) [see above] to work.  This is
 | |
|      * handled by fixing up one carry after the inner loop.  The 
 | |
|      * carry fixups are done in order so after these loops the 
 | |
|      * first m->used words of W[] have the carries fixed
 | |
|      */
 | |
|     {
 | |
|       register int iy;
 | |
|       register mp_digit *tmpn;
 | |
|       register mp_word *_W;
 | |
| 
 | |
|       /* alias for the digits of the modulus */
 | |
|       tmpn = n->dp;
 | |
| 
 | |
|       /* Alias for the columns set by an offset of ix */
 | |
|       _W = W + ix;
 | |
| 
 | |
|       /* inner loop */
 | |
|       for (iy = 0; iy < n->used; iy++) {
 | |
|           *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* now fix carry for next digit, W[ix+1] */
 | |
|     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   {
 | |
|     register mp_digit *tmpx;
 | |
|     register mp_word *_W, *_W1;
 | |
| 
 | |
|     /* nox fix rest of carries */
 | |
|     _W1 = W + ix;
 | |
|     _W = W + ++ix;
 | |
| 
 | |
|     for (; ix <= n->used * 2 + 1; ix++) {
 | |
|       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
 | |
|     }
 | |
| 
 | |
|     /* copy out, A = A/b**n
 | |
|      *
 | |
|      * The result is A/b**n but instead of converting from an 
 | |
|      * array of mp_word to mp_digit than calling mp_rshd 
 | |
|      * we just copy them in the right order
 | |
|      */
 | |
|     tmpx = x->dp;
 | |
|     _W = W + n->used;
 | |
| 
 | |
|     for (ix = 0; ix < n->used + 1; ix++) {
 | |
|       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* zero oldused digits, if the input a was larger than
 | |
|      * m->used+1 we'll have to clear the digits */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpx++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set the max used and clamp */
 | |
|   x->used = n->used + 1;
 | |
|   mp_clamp (x);
 | |
| 
 | |
|   /* if A >= m then A = A - m */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     return s_mp_sub (x, n, x);
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_fast_mp_montgomery_reduce.c */
 | |
| 
 | |
| /* Start: bn_fast_s_mp_mul_digs.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* Fast (comba) multiplier
 | |
|  *
 | |
|  * This is the fast column-array [comba] multiplier.  It is 
 | |
|  * designed to compute the columns of the product first 
 | |
|  * then handle the carries afterwards.  This has the effect 
 | |
|  * of making the nested loops that compute the columns very
 | |
|  * simple and schedulable on super-scalar processors.
 | |
|  *
 | |
|  * This has been modified to produce a variable number of 
 | |
|  * digits of output so if say only a half-product is required 
 | |
|  * you don't have to compute the upper half (a feature 
 | |
|  * required for fast Barrett reduction).
 | |
|  *
 | |
|  * Based on Algorithm 14.12 on pp.595 of HAC.
 | |
|  *
 | |
|  */
 | |
| int
 | |
| fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   int     olduse, res, pa, ix;
 | |
|   mp_word W[MP_WARRAY];
 | |
| 
 | |
|   /* grow the destination as required */
 | |
|   if (c->alloc < digs) {
 | |
|     if ((res = mp_grow (c, digs)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* clear temp buf (the columns) */
 | |
|   memset (W, 0, sizeof (mp_word) * digs);
 | |
| 
 | |
|   /* calculate the columns */
 | |
|   pa = a->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* this multiplier has been modified to allow you to 
 | |
|      * control how many digits of output are produced.  
 | |
|      * So at most we want to make upto "digs" digits of output.
 | |
|      *
 | |
|      * this adds products to distinct columns (at ix+iy) of W
 | |
|      * note that each step through the loop is not dependent on
 | |
|      * the previous which means the compiler can easily unroll
 | |
|      * the loop without scheduling problems
 | |
|      */
 | |
|     {
 | |
|       register mp_digit tmpx, *tmpy;
 | |
|       register mp_word *_W;
 | |
|       register int iy, pb;
 | |
| 
 | |
|       /* alias for the the word on the left e.g. A[ix] * A[iy] */
 | |
|       tmpx = a->dp[ix];
 | |
| 
 | |
|       /* alias for the right side */
 | |
|       tmpy = b->dp;
 | |
| 
 | |
|       /* alias for the columns, each step through the loop adds a new
 | |
|          term to each column
 | |
|        */
 | |
|       _W = W + ix;
 | |
| 
 | |
|       /* the number of digits is limited by their placement.  E.g.
 | |
|          we avoid multiplying digits that will end up above the # of
 | |
|          digits of precision requested
 | |
|        */
 | |
|       pb = MIN (b->used, digs - ix);
 | |
| 
 | |
|       for (iy = 0; iy < pb; iy++) {
 | |
|         *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse = c->used;
 | |
|   c->used = digs;
 | |
| 
 | |
|   {
 | |
|     register mp_digit *tmpc;
 | |
| 
 | |
|     /* At this point W[] contains the sums of each column.  To get the
 | |
|      * correct result we must take the extra bits from each column and
 | |
|      * carry them down
 | |
|      *
 | |
|      * Note that while this adds extra code to the multiplier it 
 | |
|      * saves time since the carry propagation is removed from the 
 | |
|      * above nested loop.This has the effect of reducing the work 
 | |
|      * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the 
 | |
|      * cost of the shifting.  On very small numbers this is slower 
 | |
|      * but on most cryptographic size numbers it is faster.
 | |
|      */
 | |
|     tmpc = c->dp;
 | |
|     for (ix = 1; ix < digs; ix++) {
 | |
|       W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
 | |
|       *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
 | |
|     }
 | |
|     *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* clear unused */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_fast_s_mp_mul_digs.c */
 | |
| 
 | |
| /* Start: bn_fast_s_mp_mul_high_digs.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* this is a modified version of fast_s_mp_mul_digs that only produces
 | |
|  * output digits *above* digs.  See the comments for fast_s_mp_mul_digs
 | |
|  * to see how it works.
 | |
|  *
 | |
|  * This is used in the Barrett reduction since for one of the multiplications
 | |
|  * only the higher digits were needed.  This essentially halves the work.
 | |
|  *
 | |
|  * Based on Algorithm 14.12 on pp.595 of HAC.
 | |
|  */
 | |
| int
 | |
| fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   int     oldused, newused, res, pa, pb, ix;
 | |
|   mp_word W[MP_WARRAY];
 | |
| 
 | |
|   /* calculate size of product and allocate more space if required */
 | |
|   newused = a->used + b->used + 1;
 | |
|   if (c->alloc < newused) {
 | |
|     if ((res = mp_grow (c, newused)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* like the other comba method we compute the columns first */
 | |
|   pa = a->used;
 | |
|   pb = b->used;
 | |
|   memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word));
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     {
 | |
|       register mp_digit tmpx, *tmpy;
 | |
|       register int iy;
 | |
|       register mp_word *_W;
 | |
| 
 | |
|       /* work todo, that is we only calculate digits that are at "digs" or above  */
 | |
|       iy = digs - ix;
 | |
| 
 | |
|       /* copy of word on the left of A[ix] * B[iy] */
 | |
|       tmpx = a->dp[ix];
 | |
| 
 | |
|       /* alias for right side */
 | |
|       tmpy = b->dp + iy;
 | |
|      
 | |
|       /* alias for the columns of output.  Offset to be equal to or above the 
 | |
|        * smallest digit place requested 
 | |
|        */
 | |
|       _W = W + digs;     
 | |
|       
 | |
|       /* skip cases below zero where ix > digs */
 | |
|       if (iy < 0) {
 | |
|          iy    = abs(iy);
 | |
|          tmpy += iy;
 | |
|          _W   += iy;
 | |
|          iy    = 0;
 | |
|       }
 | |
| 
 | |
|       /* compute column products for digits above the minimum */
 | |
|       for (; iy < pb; iy++) {
 | |
|     *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* setup dest */
 | |
|   oldused = c->used;
 | |
|   c->used = newused;
 | |
| 
 | |
|   /* now convert the array W downto what we need */
 | |
|   for (ix = digs + 1; ix < newused; ix++) {
 | |
|     W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
 | |
|     c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
 | |
|   }
 | |
|   c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
 | |
| 
 | |
|   for (; ix < oldused; ix++) {
 | |
|     c->dp[ix] = 0;
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_fast_s_mp_mul_high_digs.c */
 | |
| 
 | |
| /* Start: bn_fast_s_mp_sqr.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* fast squaring
 | |
|  *
 | |
|  * This is the comba method where the columns of the product 
 | |
|  * are computed first then the carries are computed.  This 
 | |
|  * has the effect of making a very simple inner loop that 
 | |
|  * is executed the most
 | |
|  *
 | |
|  * W2 represents the outer products and W the inner.
 | |
|  *
 | |
|  * A further optimizations is made because the inner 
 | |
|  * products are of the form "A * B * 2".  The *2 part does 
 | |
|  * not need to be computed until the end which is good 
 | |
|  * because 64-bit shifts are slow!
 | |
|  *
 | |
|  * Based on Algorithm 14.16 on pp.597 of HAC.
 | |
|  *
 | |
|  */
 | |
| int
 | |
| fast_s_mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     olduse, newused, res, ix, pa;
 | |
|   mp_word W2[MP_WARRAY], W[MP_WARRAY];
 | |
| 
 | |
|   /* calculate size of product and allocate as required */
 | |
|   pa = a->used;
 | |
|   newused = pa + pa + 1;
 | |
|   if (b->alloc < newused) {
 | |
|     if ((res = mp_grow (b, newused)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* zero temp buffer (columns)
 | |
|    * Note that there are two buffers.  Since squaring requires
 | |
|    * a outter and inner product and the inner product requires
 | |
|    * computing a product and doubling it (a relatively expensive
 | |
|    * op to perform n**2 times if you don't have to) the inner and
 | |
|    * outer products are computed in different buffers.  This way
 | |
|    * the inner product can be doubled using n doublings instead of
 | |
|    * n**2
 | |
|    */
 | |
|   memset (W, 0, newused * sizeof (mp_word));
 | |
|   memset (W2, 0, newused * sizeof (mp_word));
 | |
| 
 | |
|   /* This computes the inner product.  To simplify the inner N**2 loop
 | |
|    * the multiplication by two is done afterwards in the N loop.
 | |
|    */
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* compute the outer product
 | |
|      *
 | |
|      * Note that every outer product is computed
 | |
|      * for a particular column only once which means that
 | |
|      * there is no need todo a double precision addition
 | |
|      */
 | |
|     W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
 | |
| 
 | |
|     {
 | |
|       register mp_digit tmpx, *tmpy;
 | |
|       register mp_word *_W;
 | |
|       register int iy;
 | |
| 
 | |
|       /* copy of left side */
 | |
|       tmpx = a->dp[ix];
 | |
| 
 | |
|       /* alias for right side */
 | |
|       tmpy = a->dp + (ix + 1);
 | |
| 
 | |
|       /* the column to store the result in */
 | |
|       _W = W + (ix + ix + 1);
 | |
| 
 | |
|       /* inner products */
 | |
|       for (iy = ix + 1; iy < pa; iy++) {
 | |
|           *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse  = b->used;
 | |
|   b->used = newused;
 | |
| 
 | |
|   /* now compute digits */
 | |
|   {
 | |
|     register mp_digit *tmpb;
 | |
| 
 | |
|     /* double first value, since the inner products are 
 | |
|      * half of what they should be 
 | |
|      */
 | |
|     W[0] += W[0] + W2[0];
 | |
| 
 | |
|     tmpb = b->dp;
 | |
|     for (ix = 1; ix < newused; ix++) {
 | |
|       /* double/add next digit */
 | |
|       W[ix] += W[ix] + W2[ix];
 | |
| 
 | |
|       W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
 | |
|       *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
 | |
|     }
 | |
|     /* set the last value.  Note even if the carry is zero 
 | |
|      * this is required since the next step will not zero 
 | |
|      * it if b originally had a value at b->dp[2*a.used]
 | |
|      */
 | |
|     *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* clear high digits */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (b);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_fast_s_mp_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_2expt.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes a = 2**b 
 | |
|  *
 | |
|  * Simple algorithm which zeroes the int, grows it then just sets one bit
 | |
|  * as required.
 | |
|  */
 | |
| int
 | |
| mp_2expt (mp_int * a, int b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   mp_zero (a);
 | |
|   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   a->used = b / DIGIT_BIT + 1;
 | |
|   a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_2expt.c */
 | |
| 
 | |
| /* Start: bn_mp_abs.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* b = |a| 
 | |
|  *
 | |
|  * Simple function copies the input and fixes the sign to positive
 | |
|  */
 | |
| int
 | |
| mp_abs (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
|   if ((res = mp_copy (a, b)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   b->sign = MP_ZPOS;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_abs.c */
 | |
| 
 | |
| /* Start: bn_mp_add.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* high level addition (handles signs) */
 | |
| int
 | |
| mp_add (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     sa, sb, res;
 | |
| 
 | |
|   /* get sign of both inputs */
 | |
|   sa = a->sign;
 | |
|   sb = b->sign;
 | |
| 
 | |
|   /* handle two cases, not four */
 | |
|   if (sa == sb) {
 | |
|     /* both positive or both negative */
 | |
|     /* add their magnitudes, copy the sign */
 | |
|     c->sign = sa;
 | |
|     res = s_mp_add (a, b, c);
 | |
|   } else {
 | |
|     /* one positive, the other negative */
 | |
|     /* subtract the one with the greater magnitude from */
 | |
|     /* the one of the lesser magnitude.  The result gets */
 | |
|     /* the sign of the one with the greater magnitude. */
 | |
|     if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|       c->sign = sb;
 | |
|       res = s_mp_sub (b, a, c);
 | |
|     } else {
 | |
|       c->sign = sa;
 | |
|       res = s_mp_sub (a, b, c);
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_add.c */
 | |
| 
 | |
| /* Start: bn_mp_add_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* single digit addition */
 | |
| int
 | |
| mp_add_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_init_size(&t, 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   mp_set (&t, b);
 | |
|   res = mp_add (a, &t, c);
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_add_d.c */
 | |
| 
 | |
| /* Start: bn_mp_addmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* d = a + b (mod c) */
 | |
| int
 | |
| mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_add (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_addmod.c */
 | |
| 
 | |
| /* Start: bn_mp_and.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* AND two ints together */
 | |
| int
 | |
| mp_and (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, px;
 | |
|   mp_int  t, *x;
 | |
| 
 | |
|   if (a->used > b->used) {
 | |
|     if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = b->used;
 | |
|     x = b;
 | |
|   } else {
 | |
|     if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = a->used;
 | |
|     x = a;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < px; ix++) {
 | |
|     t.dp[ix] &= x->dp[ix];
 | |
|   }
 | |
| 
 | |
|   /* zero digits above the last from the smallest mp_int */
 | |
|   for (; ix < t.used; ix++) {
 | |
|     t.dp[ix] = 0;
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (c, &t);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_and.c */
 | |
| 
 | |
| /* Start: bn_mp_clamp.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* trim unused digits 
 | |
|  *
 | |
|  * This is used to ensure that leading zero digits are
 | |
|  * trimed and the leading "used" digit will be non-zero
 | |
|  * Typically very fast.  Also fixes the sign if there
 | |
|  * are no more leading digits
 | |
|  */
 | |
| void
 | |
| mp_clamp (mp_int * a)
 | |
| {
 | |
|   while (a->used > 0 && a->dp[a->used - 1] == 0) {
 | |
|     --(a->used);
 | |
|   }
 | |
|   if (a->used == 0) {
 | |
|     a->sign = MP_ZPOS;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_clamp.c */
 | |
| 
 | |
| /* Start: bn_mp_clear.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with 
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* clear one (frees)  */
 | |
| void
 | |
| mp_clear (mp_int * a)
 | |
| {
 | |
|   if (a->dp != NULL) {
 | |
| 
 | |
|     /* first zero the digits */
 | |
|     memset (a->dp, 0, sizeof (mp_digit) * a->used);
 | |
| 
 | |
|     /* free ram */
 | |
|     free (a->dp);
 | |
| 
 | |
|     /* reset members to make debugging easier */
 | |
|     a->dp = NULL;
 | |
|     a->alloc = a->used = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_clear.c */
 | |
| 
 | |
| /* Start: bn_mp_cmp.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* compare two ints (signed)*/
 | |
| int
 | |
| mp_cmp (mp_int * a, mp_int * b)
 | |
| {
 | |
|   /* compare based on sign */
 | |
|   if (a->sign == MP_NEG && b->sign == MP_ZPOS) {
 | |
|     return MP_LT;
 | |
|   } 
 | |
|   
 | |
|   if (a->sign == MP_ZPOS && b->sign == MP_NEG) {
 | |
|     return MP_GT;
 | |
|   }
 | |
|   
 | |
|   /* compare digits */
 | |
|   if (a->sign == MP_NEG) {
 | |
|      /* if negative compare opposite direction */
 | |
|      return mp_cmp_mag(b, a);
 | |
|   } else {
 | |
|      return mp_cmp_mag(a, b);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_cmp.c */
 | |
| 
 | |
| /* Start: bn_mp_cmp_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* compare a digit */
 | |
| int
 | |
| mp_cmp_d (mp_int * a, mp_digit b)
 | |
| {
 | |
| 
 | |
|   if (a->sign == MP_NEG) {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
|   if (a->used > 1) {
 | |
|     return MP_GT;
 | |
|   }
 | |
| 
 | |
|   if (a->dp[0] > b) {
 | |
|     return MP_GT;
 | |
|   } else if (a->dp[0] < b) {
 | |
|     return MP_LT;
 | |
|   } else {
 | |
|     return MP_EQ;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_cmp_d.c */
 | |
| 
 | |
| /* Start: bn_mp_cmp_mag.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* compare maginitude of two ints (unsigned) */
 | |
| int
 | |
| mp_cmp_mag (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     n;
 | |
| 
 | |
|   /* compare based on # of non-zero digits */
 | |
|   if (a->used > b->used) {
 | |
|     return MP_GT;
 | |
|   } 
 | |
|   
 | |
|   if (a->used < b->used) {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
|   /* compare based on digits  */
 | |
|   for (n = a->used - 1; n >= 0; n--) {
 | |
|     if (a->dp[n] > b->dp[n]) {
 | |
|       return MP_GT;
 | |
|     } 
 | |
|     
 | |
|     if (a->dp[n] < b->dp[n]) {
 | |
|       return MP_LT;
 | |
|     }
 | |
|   }
 | |
|   return MP_EQ;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_cmp_mag.c */
 | |
| 
 | |
| /* Start: bn_mp_copy.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* copy, b = a */
 | |
| int
 | |
| mp_copy (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res, n;
 | |
| 
 | |
|   /* if dst == src do nothing */
 | |
|   if (a == b) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* grow dest */
 | |
|   if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* zero b and copy the parameters over */
 | |
|   {
 | |
|     register mp_digit *tmpa, *tmpb;
 | |
| 
 | |
|     /* pointer aliases */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* copy all the digits */
 | |
|     for (n = 0; n < a->used; n++) {
 | |
|       *tmpb++ = *tmpa++;
 | |
|     }
 | |
| 
 | |
|     /* clear high digits */
 | |
|     for (; n < b->used; n++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->used = a->used;
 | |
|   b->sign = a->sign;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_copy.c */
 | |
| 
 | |
| /* Start: bn_mp_count_bits.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* returns the number of bits in an int */
 | |
| int
 | |
| mp_count_bits (mp_int * a)
 | |
| {
 | |
|   int     r;
 | |
|   mp_digit q;
 | |
| 
 | |
|   /* shortcut */
 | |
|   if (a->used == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* get number of digits and add that */
 | |
|   r = (a->used - 1) * DIGIT_BIT;
 | |
|   
 | |
|   /* take the last digit and count the bits in it */
 | |
|   q = a->dp[a->used - 1];
 | |
|   while (q > ((mp_digit) 0)) {
 | |
|     ++r;
 | |
|     q >>= ((mp_digit) 1);
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_count_bits.c */
 | |
| 
 | |
| /* Start: bn_mp_div.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* integer signed division. c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 | |
|  * HAC pp.598 Algorithm 14.20
 | |
|  *
 | |
|  * Note that the description in HAC is horribly incomplete.  For example,
 | |
|  * it doesn't consider the case where digits are removed from 'x' in the inner
 | |
|  * loop.  It also doesn't consider the case that y has fewer than three digits, etc..
 | |
|  *
 | |
|  * The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
 | |
| */
 | |
| int
 | |
| mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_int  q, x, y, t1, t2;
 | |
|   int     res, n, t, i, norm, neg;
 | |
| 
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   q.used = a->used + 2;
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     goto __Q;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto __T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
 | |
|     goto __T2;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
 | |
|     goto __X;
 | |
|   }
 | |
| 
 | |
|   /* fix the sign */
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
|   x.sign = y.sign = MP_ZPOS;
 | |
| 
 | |
|   /* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
 | |
|   norm = mp_count_bits(&y) % DIGIT_BIT;
 | |
|   if (norm < (int)(DIGIT_BIT-1)) {
 | |
|      norm = (DIGIT_BIT-1) - norm;
 | |
|      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
 | |
|        goto __Y;
 | |
|      }
 | |
|      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
 | |
|        goto __Y;
 | |
|      }
 | |
|   } else {
 | |
|      norm = 0;
 | |
|   }
 | |
| 
 | |
|   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
 | |
|   n = x.used - 1;
 | |
|   t = y.used - 1;
 | |
| 
 | |
|   /* step 2. while (x >= y*b^n-t) do { q[n-t] += 1; x -= y*b^{n-t} } */
 | |
|   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b^{n-t} */
 | |
|     goto __Y;
 | |
|   }
 | |
| 
 | |
|   while (mp_cmp (&x, &y) != MP_LT) {
 | |
|     ++(q.dp[n - t]);
 | |
|     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
 | |
|       goto __Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset y by shifting it back down */
 | |
|   mp_rshd (&y, n - t);
 | |
| 
 | |
|   /* step 3. for i from n down to (t + 1) */
 | |
|   for (i = n; i >= (t + 1); i--) {
 | |
|     if (i > x.used)
 | |
|       continue;
 | |
| 
 | |
|     /* step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
 | |
|     if (x.dp[i] == y.dp[t]) {
 | |
|       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
 | |
|     } else {
 | |
|       mp_word tmp;
 | |
|       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
 | |
|       tmp |= ((mp_word) x.dp[i - 1]);
 | |
|       tmp /= ((mp_word) y.dp[t]);
 | |
|       if (tmp > (mp_word) MP_MASK)
 | |
|         tmp = MP_MASK;
 | |
|       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* step 3.2 while (q{i-t-1} * (yt * b + y{t-1})) > xi * b^2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */
 | |
|     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
 | |
|     do {
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
 | |
| 
 | |
|       /* find left hand */
 | |
|       mp_zero (&t1);
 | |
|       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
 | |
|       t1.dp[1] = y.dp[t];
 | |
|       t1.used = 2;
 | |
|       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|         goto __Y;
 | |
|       }
 | |
| 
 | |
|       /* find right hand */
 | |
|       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
 | |
|       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
 | |
|       t2.dp[2] = x.dp[i];
 | |
|       t2.used = 3;
 | |
|     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
 | |
| 
 | |
|     /* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
 | |
|     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|       goto __Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|       goto __Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
 | |
|       goto __Y;
 | |
|     }
 | |
| 
 | |
|     /* step 3.4 if x < 0 then { x = x + y*b^{i-t-1}; q{i-t-1} -= 1; } */
 | |
|     if (x.sign == MP_NEG) {
 | |
|       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 | |
|         goto __Y;
 | |
|       }
 | |
|       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|         goto __Y;
 | |
|       }
 | |
|       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 | |
|         goto __Y;
 | |
|       }
 | |
| 
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* now q is the quotient and x is the remainder [which we have to normalize] */
 | |
|   /* get sign before writing to c */
 | |
|   x.sign = a->sign;
 | |
| 
 | |
|   if (c != NULL) {
 | |
|     mp_clamp (&q);
 | |
|     mp_exch (&q, c);
 | |
|     c->sign = neg;
 | |
|   }
 | |
| 
 | |
|   if (d != NULL) {
 | |
|     mp_div_2d (&x, norm, &x, NULL);
 | |
|     mp_exch (&x, d);
 | |
|   }
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| __Y:mp_clear (&y);
 | |
| __X:mp_clear (&x);
 | |
| __T2:mp_clear (&t2);
 | |
| __T1:mp_clear (&t1);
 | |
| __Q:mp_clear (&q);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_div.c */
 | |
| 
 | |
| /* Start: bn_mp_div_2.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* b = a/2 */
 | |
| int
 | |
| mp_div_2 (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, res, oldused;
 | |
| 
 | |
|   /* copy */
 | |
|   if (b->alloc < a->used) {
 | |
|     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   oldused = b->used;
 | |
|   b->used = a->used;
 | |
|   {
 | |
|     register mp_digit r, rr, *tmpa, *tmpb;
 | |
| 
 | |
|     /* source alias */
 | |
|     tmpa = a->dp + b->used - 1;
 | |
| 
 | |
|     /* dest alias */
 | |
|     tmpb = b->dp + b->used - 1;
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = b->used - 1; x >= 0; x--) {
 | |
|       /* get the carry for the next iteration */
 | |
|       rr = *tmpa & 1;
 | |
| 
 | |
|       /* shift the current digit, add in carry and store */
 | |
|       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
 | |
| 
 | |
|       /* forward carry to next iteration */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* zero excess digits */
 | |
|     tmpb = b->dp + b->used;
 | |
|     for (x = b->used; x < oldused; x++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->sign = a->sign;
 | |
|   mp_clamp (b);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_div_2.c */
 | |
| 
 | |
| /* Start: bn_mp_div_2d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
 | |
| int
 | |
| mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_digit D, r, rr;
 | |
|   int     x, res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   /* if the shift count is <= 0 then we do no work */
 | |
|   if (b <= 0) {
 | |
|     res = mp_copy (a, c);
 | |
|     if (d != NULL) {
 | |
|       mp_zero (d);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* get the remainder */
 | |
|   if (d != NULL) {
 | |
|     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* copy */
 | |
|   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* shift by as many digits in the bit count */
 | |
|   if (b >= (int)DIGIT_BIT) {
 | |
|     mp_rshd (c, b / DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* shift any bit count < DIGIT_BIT */
 | |
|   D = (mp_digit) (b % DIGIT_BIT);
 | |
|   if (D != 0) {
 | |
|     register mp_digit *tmpc, mask;
 | |
| 
 | |
|     /* mask */
 | |
|     mask = (((mp_digit)1) << D) - 1;
 | |
| 
 | |
|     /* alias */
 | |
|     tmpc = c->dp + (c->used - 1);
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = c->used - 1; x >= 0; x--) {
 | |
|       /* get the lower  bits of this word in a temp */
 | |
|       rr = *tmpc & mask;
 | |
| 
 | |
|       /* shift the current word and mix in the carry bits from the previous word */
 | |
|       *tmpc = (*tmpc >> D) | (r << (DIGIT_BIT - D));
 | |
|       --tmpc;
 | |
| 
 | |
|       /* set the carry to the carry bits of the current word found above */
 | |
|       r = rr;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   if (d != NULL) {
 | |
|     mp_exch (&t, d);
 | |
|   }
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_div_2d.c */
 | |
| 
 | |
| /* Start: bn_mp_div_3.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* divide by three (based on routine from MPI and the GMP manual) */
 | |
| int
 | |
| mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
 | |
| {
 | |
|   mp_int   q;
 | |
|   mp_word  w, t;
 | |
|   mp_digit b;
 | |
|   int      res, ix;
 | |
|   
 | |
|   /* b = 2**DIGIT_BIT / 3 */
 | |
|   b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
 | |
| 
 | |
|   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
|   
 | |
|   q.used = a->used;
 | |
|   q.sign = a->sign;
 | |
|   w = 0;
 | |
|   for (ix = a->used - 1; ix >= 0; ix--) {
 | |
|      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
 | |
|      
 | |
|      if (w >= 3) {
 | |
|         t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
 | |
|         w -= (t << ((mp_word)1)) + t;
 | |
|         while (w >= 3) {
 | |
|            t += 1;
 | |
|            w -= 3;
 | |
|         }
 | |
|       } else {
 | |
|         t = 0;
 | |
|       }
 | |
|       q.dp[ix] = (mp_digit)t;
 | |
|   }
 | |
|   
 | |
|   if (d != NULL) {
 | |
|      *d = (mp_digit)w;
 | |
|   }
 | |
|   
 | |
|   if (c != NULL) {
 | |
|      mp_clamp(&q);
 | |
|      mp_exch(&q, c);
 | |
|   }
 | |
|   mp_clear(&q);
 | |
|   
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_div_3.c */
 | |
| 
 | |
| /* Start: bn_mp_div_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* single digit division (based on routine from MPI) */
 | |
| int
 | |
| mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
 | |
| {
 | |
|   mp_int  q;
 | |
|   mp_word w, t;
 | |
|   int     res, ix;
 | |
|   
 | |
|   if (b == 0) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
|   
 | |
|   if (b == 3) {
 | |
|      return mp_div_3(a, c, d);
 | |
|   }
 | |
|   
 | |
|   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
|   
 | |
|   q.used = a->used;
 | |
|   q.sign = a->sign;
 | |
|   w = 0;
 | |
|   for (ix = a->used - 1; ix >= 0; ix--) {
 | |
|      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
 | |
|      
 | |
|      if (w >= b) {
 | |
|         t = w / b;
 | |
|         w = w % b;
 | |
|       } else {
 | |
|         t = 0;
 | |
|       }
 | |
|       q.dp[ix] = (mp_digit)t;
 | |
|   }
 | |
|   
 | |
|   if (d != NULL) {
 | |
|      *d = (mp_digit)w;
 | |
|   }
 | |
|   
 | |
|   if (c != NULL) {
 | |
|      mp_clamp(&q);
 | |
|      mp_exch(&q, c);
 | |
|   }
 | |
|   mp_clear(&q);
 | |
|   
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_div_d.c */
 | |
| 
 | |
| /* Start: bn_mp_dr_is_modulus.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* determines if a number is a valid DR modulus */
 | |
| int mp_dr_is_modulus(mp_int *a)
 | |
| {
 | |
|    int ix;
 | |
| 
 | |
|    /* must be at least two digits */
 | |
|    if (a->used < 2) {
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    for (ix = 1; ix < a->used; ix++) {
 | |
|        if (a->dp[ix] != MP_MASK) {
 | |
|           return 0;
 | |
|        }
 | |
|    }
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_dr_is_modulus.c */
 | |
| 
 | |
| /* Start: bn_mp_dr_reduce.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 | |
|  *
 | |
|  * Based on algorithm from the paper
 | |
|  *
 | |
|  * "Generating Efficient Primes for Discrete Log Cryptosystems"
 | |
|  *                 Chae Hoon Lim, Pil Loong Lee,
 | |
|  *          POSTECH Information Research Laboratories
 | |
|  *
 | |
|  * The modulus must be of a special format [see manual]
 | |
|  *
 | |
|  * Has been modified to use algorithm 7.10 from the LTM book instead
 | |
|  */
 | |
| int
 | |
| mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
 | |
| {
 | |
|   int      err, i, m;
 | |
|   mp_word  r;
 | |
|   mp_digit mu, *tmpx1, *tmpx2;
 | |
|   
 | |
|   /* m = digits in modulus */
 | |
|   m = n->used;
 | |
|   
 | |
|   /* ensure that "x" has at least 2m digits */
 | |
|   if (x->alloc < m + m) {
 | |
|     if ((err = mp_grow (x, m + m)) != MP_OKAY) {
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| /* top of loop, this is where the code resumes if 
 | |
|  * another reduction pass is required.
 | |
|  */
 | |
| top:
 | |
|   /* aliases for digits */
 | |
|   /* alias for lower half of x */
 | |
|   tmpx1 = x->dp;
 | |
|   
 | |
|   /* alias for upper half of x, or x/B**m */
 | |
|   tmpx2 = x->dp + m;
 | |
|   
 | |
|   /* set carry to zero */
 | |
|   mu = 0;
 | |
|   
 | |
|   /* compute (x mod B**m) + mp * [x/B**m] inline and inplace */
 | |
|   for (i = 0; i < m; i++) {
 | |
|       r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
 | |
|       *tmpx1++  = (mp_digit)(r & MP_MASK);
 | |
|       mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
 | |
|   }
 | |
|   
 | |
|   /* set final carry */
 | |
|   *tmpx1++ = mu;
 | |
|   
 | |
|   /* zero words above m */
 | |
|   for (i = m + 1; i < x->used; i++) {
 | |
|       *tmpx1++ = 0;
 | |
|   }
 | |
| 
 | |
|   /* clamp, sub and return */
 | |
|   mp_clamp (x);
 | |
| 
 | |
|   /* if x >= n then subtract and reduce again 
 | |
|    * Each successive "recursion" makes the input smaller and smaller.
 | |
|    */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     s_mp_sub(x, n, x);
 | |
|     goto top;
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_dr_reduce.c */
 | |
| 
 | |
| /* Start: bn_mp_dr_setup.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* determines the setup value */
 | |
| void mp_dr_setup(mp_int *a, mp_digit *d)
 | |
| {
 | |
|    /* the casts are required if DIGIT_BIT is one less than
 | |
|     * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
 | |
|     */
 | |
|    *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
 | |
|         ((mp_word)a->dp[0]));
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_dr_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_exch.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* swap the elements of two integers, for cases where you can't simply swap the 
 | |
|  * mp_int pointers around 
 | |
|  */
 | |
| void
 | |
| mp_exch (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  t;
 | |
| 
 | |
|   t = *a;
 | |
|   *a = *b;
 | |
|   *b = t;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_exch.c */
 | |
| 
 | |
| /* Start: bn_mp_expt_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* calculate c = a**b  using a square-multiply algorithm */
 | |
| int
 | |
| mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   int     res, x;
 | |
|   mp_int  g;
 | |
| 
 | |
|   if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* set initial result */
 | |
|   mp_set (c, 1);
 | |
| 
 | |
|   for (x = 0; x < (int) DIGIT_BIT; x++) {
 | |
|     /* square */
 | |
|     if ((res = mp_sqr (c, c)) != MP_OKAY) {
 | |
|       mp_clear (&g);
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is set multiply */
 | |
|     if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
 | |
|       if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
 | |
|          mp_clear (&g);
 | |
|          return res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* shift to next bit */
 | |
|     b <<= 1;
 | |
|   }
 | |
| 
 | |
|   mp_clear (&g);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_expt_d.c */
 | |
| 
 | |
| /* Start: bn_mp_exptmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| 
 | |
| /* this is a shell function that calls either the normal or Montgomery
 | |
|  * exptmod functions.  Originally the call to the montgomery code was
 | |
|  * embedded in the normal function but that wasted alot of stack space
 | |
|  * for nothing (since 99% of the time the Montgomery code would be called)
 | |
|  */
 | |
| int
 | |
| mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 | |
| {
 | |
|   int dr;
 | |
| 
 | |
|   /* modulus P must be positive */
 | |
|   if (P->sign == MP_NEG) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if exponent X is negative we have to recurse */
 | |
|   if (X->sign == MP_NEG) {
 | |
|      mp_int tmpG, tmpX;
 | |
|      int err;
 | |
| 
 | |
|      /* first compute 1/G mod P */
 | |
|      if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* now get |X| */
 | |
|      if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | |
|         mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | |
|      err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | |
|      mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|      return err;
 | |
|   }
 | |
| 
 | |
|   dr = mp_dr_is_modulus(P);
 | |
|   if (dr == 0) {
 | |
|      dr = mp_reduce_is_2k(P) << 1;
 | |
|   }
 | |
|     
 | |
|   /* if the modulus is odd or dr != 0 use the fast method */
 | |
|   if (mp_isodd (P) == 1 || dr !=  0) {
 | |
|     return mp_exptmod_fast (G, X, P, Y, dr);
 | |
|   } else {
 | |
|     return s_mp_exptmod (G, X, P, Y);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_exptmod.c */
 | |
| 
 | |
| /* Start: bn_mp_exptmod_fast.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
 | |
|  *
 | |
|  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | |
|  * The value of k changes based on the size of the exponent.
 | |
|  *
 | |
|  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | |
|  */
 | |
| int
 | |
| mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[256], res;
 | |
|   mp_digit buf, mp;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
|   
 | |
|   /* use a pointer to the reduction algorithm.  This allows us to use
 | |
|    * one of many reduction algorithms without modding the guts of
 | |
|    * the code with if statements everywhere.  
 | |
|    */
 | |
|   int     (*redux)(mp_int*,mp_int*,mp_digit);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|   if (winsize > 5) {
 | |
|      winsize = 5;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| 
 | |
|   /* init G array */
 | |
|   for (x = 0; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init (&M[x])) != MP_OKAY) {
 | |
|       for (y = 0; y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* determine and setup reduction code */
 | |
|   if (redmode == 0) {
 | |
|      /* now setup montgomery  */
 | |
|      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
 | |
|         goto __M;
 | |
|      }
 | |
|      
 | |
|      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | |
|      if (((P->used * 2 + 1) < MP_WARRAY) &&
 | |
|           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|         redux = fast_mp_montgomery_reduce;
 | |
|      } else {
 | |
|         /* use slower baselien method */
 | |
|         redux = mp_montgomery_reduce;
 | |
|      }
 | |
|   } else if (redmode == 1) {
 | |
|      /* setup DR reduction */
 | |
|      mp_dr_setup(P, &mp);
 | |
|      redux = mp_dr_reduce;
 | |
|   } else {
 | |
|      /* setup 2k reduction */
 | |
|      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
 | |
|         goto __M;
 | |
|      }
 | |
|      redux = mp_reduce_2k;
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto __RES;
 | |
|   }
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
|    * The M table contains powers of the input base, e.g. M[x] = G^x mod P
 | |
|    *
 | |
|    * The first half of the table is not computed though accept for M[0] and M[1]
 | |
|    */
 | |
| 
 | |
|   if (redmode == 0) {
 | |
|      /* now we need R mod m */
 | |
|      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
 | |
|        goto __RES;
 | |
|      }
 | |
| 
 | |
|      /* now set M[1] to G * R mod m */
 | |
|      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
 | |
|        goto __RES;
 | |
|      }
 | |
|   } else {
 | |
|      mp_set(&res, 1);
 | |
|      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto __RES;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto __RES;
 | |
|     }
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
 | |
|       goto __RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto __RES;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
 | |
|       goto __RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       buf = X->dp[digidx--];
 | |
|       bitcnt = (int) DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
| 
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (redmode == 0) {
 | |
|      /* fixup result if Montgomery reduction is used */
 | |
|      if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
 | |
|        goto __RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| __RES:mp_clear (&res);
 | |
| __M:
 | |
|   for (x = 0; x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_exptmod_fast.c */
 | |
| 
 | |
| /* Start: bn_mp_gcd.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP]
 | |
|  */
 | |
| int
 | |
| mp_gcd (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  u, v, t;
 | |
|   int     k, res, neg;
 | |
| 
 | |
|   /* either zero than gcd is the largest */
 | |
|   if (mp_iszero (a) == 1 && mp_iszero (b) == 0) {
 | |
|     return mp_copy (b, c);
 | |
|   }
 | |
|   if (mp_iszero (a) == 0 && mp_iszero (b) == 1) {
 | |
|     return mp_copy (a, c);
 | |
|   }
 | |
|   if (mp_iszero (a) == 1 && mp_iszero (b) == 1) {
 | |
|     mp_set (c, 1);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* if both are negative they share (-1) as a common divisor */
 | |
|   neg = (a->sign == b->sign) ? a->sign : MP_ZPOS;
 | |
| 
 | |
|   if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
 | |
|     goto __U;
 | |
|   }
 | |
| 
 | |
|   /* must be positive for the remainder of the algorithm */
 | |
|   u.sign = v.sign = MP_ZPOS;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     goto __V;
 | |
|   }
 | |
| 
 | |
|   /* B1.  Find power of two */
 | |
|   k = 0;
 | |
|   while (mp_iseven(&u) == 1 && mp_iseven(&v) == 1) {
 | |
|     ++k;
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto __T;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto __T;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* B2.  Initialize */
 | |
|   if (mp_isodd(&u) == 1) {
 | |
|     /* t = -v */
 | |
|     if ((res = mp_copy (&v, &t)) != MP_OKAY) {
 | |
|       goto __T;
 | |
|     }
 | |
|     t.sign = MP_NEG;
 | |
|   } else {
 | |
|     /* t = u */
 | |
|     if ((res = mp_copy (&u, &t)) != MP_OKAY) {
 | |
|       goto __T;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   do {
 | |
|     /* B3 (and B4).  Halve t, if even */
 | |
|     while (t.used != 0 && mp_iseven(&t) == 1) {
 | |
|       if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
 | |
|         goto __T;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* B5.  if t>0 then u=t otherwise v=-t */
 | |
|     if (t.used != 0 && t.sign != MP_NEG) {
 | |
|       if ((res = mp_copy (&t, &u)) != MP_OKAY) {
 | |
|         goto __T;
 | |
|       }
 | |
|     } else {
 | |
|       if ((res = mp_copy (&t, &v)) != MP_OKAY) {
 | |
|         goto __T;
 | |
|       }
 | |
|       v.sign = (v.sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | |
|     }
 | |
| 
 | |
|     /* B6.  t = u - v, if t != 0 loop otherwise terminate */
 | |
|     if ((res = mp_sub (&u, &v, &t)) != MP_OKAY) {
 | |
|       goto __T;
 | |
|     }
 | |
|   } while (mp_iszero(&t) == 0);
 | |
| 
 | |
|   /* multiply by 2^k which we divided out at the beginning */ 
 | |
|   if ((res = mp_mul_2d (&u, k, &u)) != MP_OKAY) {
 | |
|     goto __T;
 | |
|   }
 | |
| 
 | |
|   mp_exch (&u, c);
 | |
|   c->sign = neg;
 | |
|   res = MP_OKAY;
 | |
| __T:mp_clear (&t);
 | |
| __V:mp_clear (&u);
 | |
| __U:mp_clear (&v);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_gcd.c */
 | |
| 
 | |
| /* Start: bn_mp_grow.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* grow as required */
 | |
| int
 | |
| mp_grow (mp_int * a, int size)
 | |
| {
 | |
|   int     i;
 | |
| 
 | |
|   /* if the alloc size is smaller alloc more ram */
 | |
|   if (a->alloc < size) {
 | |
|     /* ensure there are always at least MP_PREC digits extra on top */
 | |
|     size += (MP_PREC * 2) - (size & (MP_PREC - 1));     
 | |
| 
 | |
|     a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
 | |
|     if (a->dp == NULL) {
 | |
|       return MP_MEM;
 | |
|     }
 | |
| 
 | |
|     /* zero excess digits */
 | |
|     i        = a->alloc;
 | |
|     a->alloc = size;
 | |
|     for (; i < a->alloc; i++) {
 | |
|       a->dp[i] = 0;
 | |
|     }
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_grow.c */
 | |
| 
 | |
| /* Start: bn_mp_init.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with 
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* init a new bigint */
 | |
| int
 | |
| mp_init (mp_int * a)
 | |
| {
 | |
|   /* allocate ram required and clear it */
 | |
|   a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
 | |
|   if (a->dp == NULL) {
 | |
|     return MP_MEM;
 | |
|   }
 | |
| 
 | |
|   /* set the used to zero, allocated digits to the default precision
 | |
|    * and sign to positive */
 | |
|   a->used  = 0;
 | |
|   a->alloc = MP_PREC;
 | |
|   a->sign  = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_init.c */
 | |
| 
 | |
| /* Start: bn_mp_init_copy.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* creates "a" then copies b into it */
 | |
| int
 | |
| mp_init_copy (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_init (a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   return mp_copy (b, a);
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_init_copy.c */
 | |
| 
 | |
| /* Start: bn_mp_init_size.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* init a mp_init and grow it to a given size */
 | |
| int
 | |
| mp_init_size (mp_int * a, int size)
 | |
| {
 | |
| 
 | |
|   /* pad size so there are always extra digits */
 | |
|   size += (MP_PREC * 2) - (size & (MP_PREC - 1));   
 | |
|   
 | |
|   /* alloc mem */
 | |
|   a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
 | |
|   if (a->dp == NULL) {
 | |
|     return MP_MEM;
 | |
|   }
 | |
|   a->used = 0;
 | |
|   a->alloc = size;
 | |
|   a->sign = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_init_size.c */
 | |
| 
 | |
| /* Start: bn_mp_invmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| int
 | |
| mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x, y, u, v, A, B, C, D;
 | |
|   int     res;
 | |
| 
 | |
|   /* b cannot be negative */
 | |
|   if (b->sign == MP_NEG) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if the modulus is odd we can use a faster routine instead */
 | |
|   if (mp_iseven (b) == 0) {
 | |
|     return fast_mp_invmod (a, b, c);
 | |
|   }
 | |
|   
 | |
|   /* init temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x = a, y = b */
 | |
|   if ((res = mp_copy (a, &x)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (b, &y)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_abs (&x, &x)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* 2. [modified] if x,y are both even then return an error! */
 | |
|   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
 | |
|     res = MP_VAL;
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|   }
 | |
|   mp_set (&A, 1);
 | |
|   mp_set (&D, 1);
 | |
| 
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven (&u) == 1) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|     /* 4.2 if A or B is odd then */
 | |
|     if (mp_iseven (&A) == 0 || mp_iseven (&B) == 0) {
 | |
|       /* A = (A+y)/2, B = (B-x)/2 */
 | |
|       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|       }
 | |
|       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|       }
 | |
|     }
 | |
|     /* A = A/2, B = B/2 */
 | |
|     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven (&v) == 1) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|     /* 5.2 if C,D are even then */
 | |
|     if (mp_iseven (&C) == 0 || mp_iseven (&D) == 0) {
 | |
|       /* C = (C+y)/2, D = (D-x)/2 */
 | |
|       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|       }
 | |
|       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | |
|     goto __ERR;
 | |
|       }
 | |
|     }
 | |
|     /* C = C/2, D = D/2 */
 | |
|     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp (&u, &v) != MP_LT) {
 | |
|     /* u = u - v, A = A - C, B = B - D */
 | |
|     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, C = C - A, D = D - B */
 | |
|     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | |
|       goto __ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero (&u) == 0)
 | |
|     goto top;
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto __ERR;
 | |
|   }
 | |
| 
 | |
|   /* a is now the inverse */
 | |
|   mp_exch (&C, c);
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_invmod.c */
 | |
| 
 | |
| /* Start: bn_mp_jacobi.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes the jacobi c = (a | n) (or Legendre if n is prime)
 | |
|  * HAC pp. 73 Algorithm 2.149
 | |
|  */
 | |
| int
 | |
| mp_jacobi (mp_int * a, mp_int * n, int *c)
 | |
| {
 | |
|   mp_int  a1, n1, e;
 | |
|   int     s, r, res;
 | |
|   mp_digit residue;
 | |
| 
 | |
|   /* step 1.  if a == 0, return 0 */
 | |
|   if (mp_iszero (a) == 1) {
 | |
|     *c = 0;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* step 2.  if a == 1, return 1 */
 | |
|   if (mp_cmp_d (a, 1) == MP_EQ) {
 | |
|     *c = 1;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* default */
 | |
|   s = 0;
 | |
| 
 | |
|   /* step 3.  write a = a1 * 2^e  */
 | |
|   if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&n1)) != MP_OKAY) {
 | |
|     goto __A1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&e)) != MP_OKAY) {
 | |
|     goto __N1;
 | |
|   }
 | |
| 
 | |
|   while (mp_iseven (&a1) == 1) {
 | |
|     if ((res = mp_add_d (&e, 1, &e)) != MP_OKAY) {
 | |
|       goto __E;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_div_2 (&a1, &a1)) != MP_OKAY) {
 | |
|       goto __E;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* step 4.  if e is even set s=1 */
 | |
|   if (mp_iseven (&e) == 1) {
 | |
|     s = 1;
 | |
|   } else {
 | |
|     /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
 | |
|     if ((res = mp_mod_d (n, 8, &residue)) != MP_OKAY) {
 | |
|       goto __E;
 | |
|     }
 | |
| 
 | |
|     if (residue == 1 || residue == 7) {
 | |
|       s = 1;
 | |
|     } else if (residue == 3 || residue == 5) {
 | |
|       s = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* step 5.  if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
 | |
|   if ((res = mp_mod_d (n, 4, &residue)) != MP_OKAY) {
 | |
|     goto __E;
 | |
|   }
 | |
|   if (residue == 3) {
 | |
|     if ((res = mp_mod_d (&a1, 4, &residue)) != MP_OKAY) {
 | |
|       goto __E;
 | |
|     }
 | |
|     if (residue == 3) {
 | |
|       s = -s;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if a1 == 1 we're done */
 | |
|   if (mp_cmp_d (&a1, 1) == MP_EQ) {
 | |
|     *c = s;
 | |
|   } else {
 | |
|     /* n1 = n mod a1 */
 | |
|     if ((res = mp_mod (n, &a1, &n1)) != MP_OKAY) {
 | |
|       goto __E;
 | |
|     }
 | |
|     if ((res = mp_jacobi (&n1, &a1, &r)) != MP_OKAY) {
 | |
|       goto __E;
 | |
|     }
 | |
|     *c = s * r;
 | |
|   }
 | |
| 
 | |
|   /* done */
 | |
|   res = MP_OKAY;
 | |
| __E:mp_clear (&e);
 | |
| __N1:mp_clear (&n1);
 | |
| __A1:mp_clear (&a1);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_jacobi.c */
 | |
| 
 | |
| /* Start: bn_mp_karatsuba_mul.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* c = |a| * |b| using Karatsuba Multiplication using 
 | |
|  * three half size multiplications
 | |
|  *
 | |
|  * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 | |
|  * let n represent half of the number of digits in 
 | |
|  * the min(a,b)
 | |
|  *
 | |
|  * a = a1 * B**n + a0
 | |
|  * b = b1 * B**n + b0
 | |
|  *
 | |
|  * Then, a * b => 
 | |
|    a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
 | |
|  *
 | |
|  * Note that a1b1 and a0b0 are used twice and only need to be 
 | |
|  * computed once.  So in total three half size (half # of 
 | |
|  * digit) multiplications are performed, a0b0, a1b1 and 
 | |
|  * (a1-b1)(a0-b0)
 | |
|  *
 | |
|  * Note that a multiplication of half the digits requires
 | |
|  * 1/4th the number of single precision multiplications so in 
 | |
|  * total after one call 25% of the single precision multiplications 
 | |
|  * are saved.  Note also that the call to mp_mul can end up back 
 | |
|  * in this function if the a0, a1, b0, or b1 are above the threshold.  
 | |
|  * This is known as divide-and-conquer and leads to the famous 
 | |
|  * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
 | |
|  * the standard O(N**2) that the baseline/comba methods use.  
 | |
|  * Generally though the overhead of this method doesn't pay off 
 | |
|  * until a certain size (N ~ 80) is reached.
 | |
|  */
 | |
| int
 | |
| mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
 | |
|   int     B, err;
 | |
| 
 | |
|   /* default the return code to an error */
 | |
|   err = MP_MEM;
 | |
| 
 | |
|   /* min # of digits */
 | |
|   B = MIN (a->used, b->used);
 | |
| 
 | |
|   /* now divide in two */
 | |
|   B = B / 2;
 | |
| 
 | |
|   /* init copy all the temps */
 | |
|   if (mp_init_size (&x0, B) != MP_OKAY)
 | |
|     goto ERR;
 | |
|   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | |
|     goto X0;
 | |
|   if (mp_init_size (&y0, B) != MP_OKAY)
 | |
|     goto X1;
 | |
|   if (mp_init_size (&y1, b->used - B) != MP_OKAY)
 | |
|     goto Y0;
 | |
| 
 | |
|   /* init temps */
 | |
|   if (mp_init_size (&t1, B * 2) != MP_OKAY)
 | |
|     goto Y1;
 | |
|   if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
 | |
|     goto T1;
 | |
|   if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
 | |
|     goto X0Y0;
 | |
| 
 | |
|   /* now shift the digits */
 | |
|   x0.sign = x1.sign = a->sign;
 | |
|   y0.sign = y1.sign = b->sign;
 | |
| 
 | |
|   x0.used = y0.used = B;
 | |
|   x1.used = a->used - B;
 | |
|   y1.used = b->used - B;
 | |
| 
 | |
|   {
 | |
|     register int x;
 | |
|     register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
 | |
| 
 | |
|     /* we copy the digits directly instead of using higher level functions
 | |
|      * since we also need to shift the digits
 | |
|      */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     tmpx = x0.dp;
 | |
|     tmpy = y0.dp;
 | |
|     for (x = 0; x < B; x++) {
 | |
|       *tmpx++ = *tmpa++;
 | |
|       *tmpy++ = *tmpb++;
 | |
|     }
 | |
| 
 | |
|     tmpx = x1.dp;
 | |
|     for (x = B; x < a->used; x++) {
 | |
|       *tmpx++ = *tmpa++;
 | |
|     }
 | |
| 
 | |
|     tmpy = y1.dp;
 | |
|     for (x = B; x < b->used; x++) {
 | |
|       *tmpy++ = *tmpb++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* only need to clamp the lower words since by definition the 
 | |
|    * upper words x1/y1 must have a known number of digits
 | |
|    */
 | |
|   mp_clamp (&x0);
 | |
|   mp_clamp (&y0);
 | |
| 
 | |
|   /* now calc the products x0y0 and x1y1 */
 | |
|   /* after this x0 is no longer required, free temp [x0==t2]! */
 | |
|   if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
 | |
|     goto X1Y1;          /* x0y0 = x0*y0 */
 | |
|   if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
 | |
|     goto X1Y1;          /* x1y1 = x1*y1 */
 | |
| 
 | |
|   /* now calc x1-x0 and y1-y0 */
 | |
|   if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x1 - x0 */
 | |
|   if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
 | |
|     goto X1Y1;          /* t2 = y1 - y0 */
 | |
|   if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */
 | |
| 
 | |
|   /* add x0y0 */
 | |
|   if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
 | |
|     goto X1Y1;          /* t2 = x0y0 + x1y1 */
 | |
|   if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
 | |
| 
 | |
|   /* shift by B */
 | |
|   if (mp_lshd (&t1, B) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
 | |
|   if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
 | |
|     goto X1Y1;          /* x1y1 = x1y1 << 2*B */
 | |
| 
 | |
|   if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + t1 */
 | |
|   if (mp_add (&t1, &x1y1, c) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
 | |
| 
 | |
|   /* Algorithm succeeded set the return code to MP_OKAY */
 | |
|   err = MP_OKAY;
 | |
| 
 | |
| X1Y1:mp_clear (&x1y1);
 | |
| X0Y0:mp_clear (&x0y0);
 | |
| T1:mp_clear (&t1);
 | |
| Y1:mp_clear (&y1);
 | |
| Y0:mp_clear (&y0);
 | |
| X1:mp_clear (&x1);
 | |
| X0:mp_clear (&x0);
 | |
| ERR:
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_karatsuba_mul.c */
 | |
| 
 | |
| /* Start: bn_mp_karatsuba_sqr.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* Karatsuba squaring, computes b = a*a using three 
 | |
|  * half size squarings
 | |
|  *
 | |
|  * See comments of mp_karatsuba_mul for details.  It 
 | |
|  * is essentially the same algorithm but merely 
 | |
|  * tuned to perform recursive squarings.
 | |
|  */
 | |
| int
 | |
| mp_karatsuba_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  x0, x1, t1, t2, x0x0, x1x1;
 | |
|   int     B, err;
 | |
| 
 | |
|   err = MP_MEM;
 | |
| 
 | |
|   /* min # of digits */
 | |
|   B = a->used;
 | |
| 
 | |
|   /* now divide in two */
 | |
|   B = B / 2;
 | |
| 
 | |
|   /* init copy all the temps */
 | |
|   if (mp_init_size (&x0, B) != MP_OKAY)
 | |
|     goto ERR;
 | |
|   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | |
|     goto X0;
 | |
| 
 | |
|   /* init temps */
 | |
|   if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
 | |
|     goto X1;
 | |
|   if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
 | |
|     goto T1;
 | |
|   if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
 | |
|     goto T2;
 | |
|   if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
 | |
|     goto X0X0;
 | |
| 
 | |
|   {
 | |
|     register int x;
 | |
|     register mp_digit *dst, *src;
 | |
| 
 | |
|     src = a->dp;
 | |
| 
 | |
|     /* now shift the digits */
 | |
|     dst = x0.dp;
 | |
|     for (x = 0; x < B; x++) {
 | |
|       *dst++ = *src++;
 | |
|     }
 | |
| 
 | |
|     dst = x1.dp;
 | |
|     for (x = B; x < a->used; x++) {
 | |
|       *dst++ = *src++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   x0.used = B;
 | |
|   x1.used = a->used - B;
 | |
| 
 | |
|   mp_clamp (&x0);
 | |
| 
 | |
|   /* now calc the products x0*x0 and x1*x1 */
 | |
|   if (mp_sqr (&x0, &x0x0) != MP_OKAY)
 | |
|     goto X1X1;           /* x0x0 = x0*x0 */
 | |
|   if (mp_sqr (&x1, &x1x1) != MP_OKAY)
 | |
|     goto X1X1;           /* x1x1 = x1*x1 */
 | |
| 
 | |
|   /* now calc (x1-x0)**2 */
 | |
|   if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x1 - x0 */
 | |
|   if (mp_sqr (&t1, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
 | |
| 
 | |
|   /* add x0y0 */
 | |
|   if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
 | |
|     goto X1X1;           /* t2 = x0x0 + x1x1 */
 | |
|   if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
 | |
| 
 | |
|   /* shift by B */
 | |
|   if (mp_lshd (&t1, B) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
 | |
|   if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
 | |
|     goto X1X1;           /* x1x1 = x1x1 << 2*B */
 | |
| 
 | |
|   if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x0x0 + t1 */
 | |
|   if (mp_add (&t1, &x1x1, b) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
 | |
| 
 | |
|   err = MP_OKAY;
 | |
| 
 | |
| X1X1:mp_clear (&x1x1);
 | |
| X0X0:mp_clear (&x0x0);
 | |
| T2:mp_clear (&t2);
 | |
| T1:mp_clear (&t1);
 | |
| X1:mp_clear (&x1);
 | |
| X0:mp_clear (&x0);
 | |
| ERR:
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_karatsuba_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_lcm.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes least common multiple as a*b/(a, b) */
 | |
| int
 | |
| mp_lcm (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_gcd (a, b, c)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   res = mp_div (&t, c, c, NULL);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_lcm.c */
 | |
| 
 | |
| /* Start: bn_mp_lshd.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* shift left a certain amount of digits */
 | |
| int
 | |
| mp_lshd (mp_int * a, int b)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   /* if its less than zero return */
 | |
|   if (b <= 0) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* grow to fit the new digits */
 | |
|   if (a->alloc < a->used + b) {
 | |
|      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_digit *top, *bottom;
 | |
| 
 | |
|     /* increment the used by the shift amount then copy upwards */
 | |
|     a->used += b;
 | |
| 
 | |
|     /* top */
 | |
|     top = a->dp + a->used - 1;
 | |
| 
 | |
|     /* base */
 | |
|     bottom = a->dp + a->used - 1 - b;
 | |
| 
 | |
|     /* much like mp_rshd this is implemented using a sliding window
 | |
|      * except the window goes the otherway around.  Copying from
 | |
|      * the bottom to the top.  see bn_mp_rshd.c for more info.
 | |
|      */
 | |
|     for (x = a->used - 1; x >= b; x--) {
 | |
|       *top-- = *bottom--;
 | |
|     }
 | |
| 
 | |
|     /* zero the lower digits */
 | |
|     top = a->dp;
 | |
|     for (x = 0; x < b; x++) {
 | |
|       *top++ = 0;
 | |
|     }
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_lshd.c */
 | |
| 
 | |
| /* Start: bn_mp_mod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* c = a mod b, 0 <= c < b */
 | |
| int
 | |
| mp_mod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if (t.sign == MP_NEG) {
 | |
|     res = mp_add (b, &t, c);
 | |
|   } else {
 | |
|     res = MP_OKAY;
 | |
|     mp_exch (&t, c);
 | |
|   }
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mod.c */
 | |
| 
 | |
| /* Start: bn_mp_mod_2d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* calc a value mod 2^b */
 | |
| int
 | |
| mp_mod_2d (mp_int * a, int b, mp_int * c)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
| 
 | |
|   /* if b is <= 0 then zero the int */
 | |
|   if (b <= 0) {
 | |
|     mp_zero (c);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* if the modulus is larger than the value than return */
 | |
|   if (b > (int) (a->used * DIGIT_BIT)) {
 | |
|     res = mp_copy (a, c);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* copy */
 | |
|   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* zero digits above the last digit of the modulus */
 | |
|   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
 | |
|     c->dp[x] = 0;
 | |
|   }
 | |
|   /* clear the digit that is not completely outside/inside the modulus */
 | |
|   c->dp[b / DIGIT_BIT] &=
 | |
|     (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mod_2d.c */
 | |
| 
 | |
| /* Start: bn_mp_mod_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| int
 | |
| mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
 | |
| {
 | |
|   return mp_div_d(a, b, NULL, c);
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mod_d.c */
 | |
| 
 | |
| /* Start: bn_mp_montgomery_calc_normalization.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* calculates a = B^n mod b for Montgomery reduction
 | |
|  * Where B is the base [e.g. 2^DIGIT_BIT].
 | |
|  * B^n mod b is computed by first computing
 | |
|  * A = B^(n-1) which doesn't require a reduction but a simple OR.
 | |
|  * then C = A * B = B^n is computed by performing upto DIGIT_BIT
 | |
|  * shifts with subtractions when the result is greater than b.
 | |
|  *
 | |
|  * The method is slightly modified to shift B unconditionally upto just under
 | |
|  * the leading bit of b.  This saves alot of multiple precision shifting.
 | |
|  */
 | |
| int
 | |
| mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, bits, res;
 | |
| 
 | |
|   /* how many bits of last digit does b use */
 | |
|   bits = mp_count_bits (b) % DIGIT_BIT;
 | |
| 
 | |
|   /* compute A = B^(n-1) * 2^(bits-1) */
 | |
|   if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* now compute C = A * B mod b */
 | |
|   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
 | |
|     if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     if (mp_cmp_mag (a, b) != MP_LT) {
 | |
|       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
 | |
|         return res;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_montgomery_calc_normalization.c */
 | |
| 
 | |
| /* Start: bn_mp_montgomery_reduce.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction */
 | |
| int
 | |
| mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 | |
| {
 | |
|   int     ix, res, digs;
 | |
|   mp_digit mu;
 | |
| 
 | |
|   /* can the fast reduction [comba] method be used?
 | |
|    *
 | |
|    * Note that unlike in mp_mul you're safely allowed *less*
 | |
|    * than the available columns [255 per default] since carries
 | |
|    * are fixed up in the inner loop.
 | |
|    */
 | |
|   digs = n->used * 2 + 1;
 | |
|   if ((digs < MP_WARRAY) && 
 | |
|       n->used < 
 | |
|       (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_mp_montgomery_reduce (x, n, rho);
 | |
|   }
 | |
| 
 | |
|   /* grow the input as required */
 | |
|   if (x->alloc < digs) {
 | |
|     if ((res = mp_grow (x, digs)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   x->used = digs;
 | |
| 
 | |
|   for (ix = 0; ix < n->used; ix++) {
 | |
|     /* mu = ai * m' mod b */
 | |
|     mu = (x->dp[ix] * rho) & MP_MASK;
 | |
| 
 | |
|     /* a = a + mu * m * b**i */
 | |
|     {
 | |
|       register int iy;
 | |
|       register mp_digit *tmpn, *tmpx, u;
 | |
|       register mp_word r;
 | |
| 
 | |
|       /* aliases */
 | |
|       tmpn = n->dp;
 | |
|       tmpx = x->dp + ix;
 | |
| 
 | |
|       /* set the carry to zero */
 | |
|       u = 0;
 | |
|       
 | |
|       /* Multiply and add in place */
 | |
|       for (iy = 0; iy < n->used; iy++) {
 | |
|         r       = ((mp_word) mu) * ((mp_word) * tmpn++) + 
 | |
|                   ((mp_word) u) + ((mp_word) * tmpx);
 | |
|         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|         *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
 | |
|       }
 | |
|       /* propagate carries */
 | |
|       while (u) {
 | |
|         *tmpx   += u;
 | |
|         u        = *tmpx >> DIGIT_BIT;
 | |
|         *tmpx++ &= MP_MASK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* x = x/b**n.used */
 | |
|   mp_clamp(x);
 | |
|   mp_rshd (x, n->used);
 | |
| 
 | |
|   /* if A >= m then A = A - m */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     return s_mp_sub (x, n, x);
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_montgomery_reduce.c */
 | |
| 
 | |
| /* Start: bn_mp_montgomery_setup.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* setups the montgomery reduction stuff */
 | |
| int
 | |
| mp_montgomery_setup (mp_int * n, mp_digit * rho)
 | |
| {
 | |
|   mp_digit x, b;
 | |
| 
 | |
| /* fast inversion mod 2**k
 | |
|  *
 | |
|  * Based on the fact that
 | |
|  *
 | |
|  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 | |
|  *                    =>  2*X*A - X*X*A*A = 1
 | |
|  *                    =>  2*(1) - (1)     = 1
 | |
|  */
 | |
|   b = n->dp[0];
 | |
| 
 | |
|   if ((b & 1) == 0) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
 | |
| #if !defined(MP_8BIT)
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
 | |
| #endif
 | |
| #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
 | |
| #endif
 | |
| #ifdef MP_64BIT
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
 | |
| #endif
 | |
| 
 | |
|   /* rho = -1/m mod b */
 | |
|   *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_montgomery_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_mul.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* high level multiplication (handles sign) */
 | |
| int
 | |
| mp_mul (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, neg;
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
|   
 | |
|   if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
 | |
|     res = mp_toom_mul(a, b, c);
 | |
|   } else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
 | |
|     res = mp_karatsuba_mul (a, b, c);
 | |
|   } else {
 | |
| 
 | |
|     /* can we use the fast multiplier?
 | |
|      *
 | |
|      * The fast multiplier can be used if the output will 
 | |
|      * have less than MP_WARRAY digits and the number of 
 | |
|      * digits won't affect carry propagation
 | |
|      */
 | |
|     int     digs = a->used + b->used + 1;
 | |
| 
 | |
|     if ((digs < MP_WARRAY) &&
 | |
|         MIN(a->used, b->used) <= 
 | |
|         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|       res = fast_s_mp_mul_digs (a, b, c, digs);
 | |
|     } else {
 | |
|       res = s_mp_mul (a, b, c);
 | |
|     }
 | |
| 
 | |
|   }
 | |
|   c->sign = neg;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mul.c */
 | |
| 
 | |
| /* Start: bn_mp_mul_2.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* b = a*2 */
 | |
| int
 | |
| mp_mul_2 (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, res, oldused;
 | |
| 
 | |
|   /* grow to accomodate result */
 | |
|   if (b->alloc < a->used + 1) {
 | |
|     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   oldused = b->used;
 | |
|   b->used = a->used;
 | |
| 
 | |
|   {
 | |
|     register mp_digit r, rr, *tmpa, *tmpb;
 | |
| 
 | |
|     /* alias for source */
 | |
|     tmpa = a->dp;
 | |
|     
 | |
|     /* alias for dest */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = 0; x < a->used; x++) {
 | |
|     
 | |
|       /* get what will be the *next* carry bit from the 
 | |
|        * MSB of the current digit 
 | |
|        */
 | |
|       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
 | |
|       
 | |
|       /* now shift up this digit, add in the carry [from the previous] */
 | |
|       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
 | |
|       
 | |
|       /* copy the carry that would be from the source 
 | |
|        * digit into the next iteration 
 | |
|        */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* new leading digit? */
 | |
|     if (r != 0) {
 | |
|       /* add a MSB which is always 1 at this point */
 | |
|       *tmpb = 1;
 | |
|       ++b->used;
 | |
|     }
 | |
| 
 | |
|     /* now zero any excess digits on the destination 
 | |
|      * that we didn't write to 
 | |
|      */
 | |
|     tmpb = b->dp + b->used;
 | |
|     for (x = b->used; x < oldused; x++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->sign = a->sign;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mul_2.c */
 | |
| 
 | |
| /* Start: bn_mp_mul_2d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* NOTE:  This routine requires updating.  For instance the c->used = c->alloc bit
 | |
|    is wrong.  We should just shift c->used digits then set the carry as c->dp[c->used] = carry
 | |
|  
 | |
|    To be fixed for LTM 0.18
 | |
|  */
 | |
| 
 | |
| /* shift left by a certain bit count */
 | |
| int
 | |
| mp_mul_2d (mp_int * a, int b, mp_int * c)
 | |
| {
 | |
|   mp_digit d;
 | |
|   int      res;
 | |
| 
 | |
|   /* copy */
 | |
|   if (a != c) {
 | |
|      if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 2)) {
 | |
|      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 2)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* shift by as many digits in the bit count */
 | |
|   if (b >= (int)DIGIT_BIT) {
 | |
|     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   c->used = c->alloc;
 | |
| 
 | |
|   /* shift any bit count < DIGIT_BIT */
 | |
|   d = (mp_digit) (b % DIGIT_BIT);
 | |
|   if (d != 0) {
 | |
|     register mp_digit *tmpc, mask, r, rr;
 | |
|     register int x;
 | |
| 
 | |
|     /* bitmask for carries */
 | |
|     mask = (((mp_digit)1) << d) - 1;
 | |
| 
 | |
|     /* alias */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* carry */
 | |
|     r    = 0;
 | |
|     for (x = 0; x < c->used; x++) {
 | |
|       /* get the higher bits of the current word */
 | |
|       rr = (*tmpc >> (DIGIT_BIT - d)) & mask;
 | |
| 
 | |
|       /* shift the current word and OR in the carry */
 | |
|       *tmpc = ((*tmpc << d) | r) & MP_MASK;
 | |
|       ++tmpc;
 | |
| 
 | |
|       /* set the carry to the carry bits of the current word */
 | |
|       r = rr;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mul_2d.c */
 | |
| 
 | |
| /* Start: bn_mp_mul_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* multiply by a digit */
 | |
| int
 | |
| mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   int     res, pa, olduse;
 | |
| 
 | |
|   /* make sure c is big enough to hold a*b */
 | |
|   pa = a->used;
 | |
|   if (c->alloc < pa + 1) {
 | |
|     if ((res = mp_grow (c, pa + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* get the original destinations used count */
 | |
|   olduse = c->used;
 | |
| 
 | |
|   /* set the new temporary used count */
 | |
|   c->used = pa + 1;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpc;
 | |
|     register mp_word r;
 | |
|     register int ix;
 | |
| 
 | |
|     /* alias for a->dp [source] */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* alias for c->dp [dest] */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* zero carry */
 | |
|     u = 0;
 | |
|     for (ix = 0; ix < pa; ix++) {
 | |
|       /* compute product and carry sum for this term */
 | |
|       r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
 | |
| 
 | |
|       /* mask off higher bits to get a single digit */
 | |
|       *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* send carry into next iteration */
 | |
|       u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* store final carry [if any] */
 | |
|     *tmpc++ = u;
 | |
| 
 | |
|     /* now zero digits above the top */
 | |
|     for (; pa < olduse; pa++) {
 | |
|        *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mul_d.c */
 | |
| 
 | |
| /* Start: bn_mp_mulmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* d = a * b (mod c) */
 | |
| int
 | |
| mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_mulmod.c */
 | |
| 
 | |
| /* Start: bn_mp_multi.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| #include <stdarg.h>
 | |
| 
 | |
| int mp_init_multi(mp_int *mp, ...) 
 | |
| {
 | |
|     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
 | |
|     int n = 0;                 /* Number of ok inits */
 | |
|     mp_int* cur_arg = mp;
 | |
|     va_list args;
 | |
| 
 | |
|     va_start(args, mp);        /* init args to next argument from caller */
 | |
|     while (cur_arg != NULL) {
 | |
|         if (mp_init(cur_arg) != MP_OKAY) {
 | |
|             /* Oops - error! Back-track and mp_clear what we already
 | |
|                succeeded in init-ing, then return error.
 | |
|             */
 | |
|             va_list clean_args;
 | |
|             
 | |
|             /* end the current list */
 | |
|             va_end(args);
 | |
|             
 | |
|             /* now start cleaning up */            
 | |
|             cur_arg = mp;
 | |
|             va_start(clean_args, mp);
 | |
|             while (n--) {
 | |
|                 mp_clear(cur_arg);
 | |
|                 cur_arg = va_arg(clean_args, mp_int*);
 | |
|             }
 | |
|             va_end(clean_args);
 | |
|             res = MP_MEM;
 | |
|             break;
 | |
|         }
 | |
|         n++;
 | |
|         cur_arg = va_arg(args, mp_int*);
 | |
|     }
 | |
|     va_end(args);
 | |
|     return res;                /* Assumed ok, if error flagged above. */
 | |
| }
 | |
| 
 | |
| void mp_clear_multi(mp_int *mp, ...) 
 | |
| {
 | |
|     mp_int* next_mp = mp;
 | |
|     va_list args;
 | |
|     va_start(args, mp);
 | |
|     while (next_mp != NULL) {
 | |
|         mp_clear(next_mp);
 | |
|         next_mp = va_arg(args, mp_int*);
 | |
|     }
 | |
|     va_end(args);
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_multi.c */
 | |
| 
 | |
| /* Start: bn_mp_n_root.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* find the n'th root of an integer 
 | |
|  *
 | |
|  * Result found such that (c)^b <= a and (c+1)^b > a 
 | |
|  *
 | |
|  * This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i]) 
 | |
|  * which will find the root in log(N) time where each step involves a fair bit.  This
 | |
|  * is not meant to find huge roots [square and cube at most].
 | |
|  */
 | |
| int
 | |
| mp_n_root (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_int  t1, t2, t3;
 | |
|   int     res, neg;
 | |
| 
 | |
|   /* input must be positive if b is even */
 | |
|   if ((b & 1) == 0 && a->sign == MP_NEG) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto __T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t3)) != MP_OKAY) {
 | |
|     goto __T2;
 | |
|   }
 | |
| 
 | |
|   /* if a is negative fudge the sign but keep track */
 | |
|   neg = a->sign;
 | |
|   a->sign = MP_ZPOS;
 | |
| 
 | |
|   /* t2 = 2 */
 | |
|   mp_set (&t2, 2);
 | |
| 
 | |
|   do {
 | |
|     /* t1 = t2 */
 | |
|     if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     /* t2 = t1 - ((t1^b - a) / (b * t1^(b-1))) */
 | |
|     if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {   /* t3 = t1^(b-1) */
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     /* numerator */
 | |
|     if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {    /* t2 = t1^b */
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {  /* t2 = t1^b - a */
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {    /* t3 = t1^(b-1) * b  */
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {  /* t3 = (t1^b - a)/(b * t1^(b-1)) */
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
 | |
|       goto __T3;
 | |
|     }
 | |
|   }
 | |
|   while (mp_cmp (&t1, &t2) != MP_EQ);
 | |
| 
 | |
|   /* result can be off by a few so check */
 | |
|   for (;;) {
 | |
|     if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
 | |
|       goto __T3;
 | |
|     }
 | |
| 
 | |
|     if (mp_cmp (&t2, a) == MP_GT) {
 | |
|       if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
 | |
|     goto __T3;
 | |
|       }
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset the sign of a first */
 | |
|   a->sign = neg;
 | |
| 
 | |
|   /* set the result */
 | |
|   mp_exch (&t1, c);
 | |
| 
 | |
|   /* set the sign of the result */
 | |
|   c->sign = neg;
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| __T3:mp_clear (&t3);
 | |
| __T2:mp_clear (&t2);
 | |
| __T1:mp_clear (&t1);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_n_root.c */
 | |
| 
 | |
| /* Start: bn_mp_neg.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* b = -a */
 | |
| int
 | |
| mp_neg (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
|   if ((res = mp_copy (a, b)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_neg.c */
 | |
| 
 | |
| /* Start: bn_mp_or.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* OR two ints together */
 | |
| int
 | |
| mp_or (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, px;
 | |
|   mp_int  t, *x;
 | |
| 
 | |
|   if (a->used > b->used) {
 | |
|     if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = b->used;
 | |
|     x = b;
 | |
|   } else {
 | |
|     if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = a->used;
 | |
|     x = a;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < px; ix++) {
 | |
|     t.dp[ix] |= x->dp[ix];
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (c, &t);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_or.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_fermat.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* performs one Fermat test.
 | |
|  * 
 | |
|  * If "a" were prime then b^a == b (mod a) since the order of
 | |
|  * the multiplicative sub-group would be phi(a) = a-1.  That means
 | |
|  * it would be the same as b^(a mod (a-1)) == b^1 == b (mod a).
 | |
|  *
 | |
|  * Sets result to 1 if the congruence holds, or zero otherwise.
 | |
|  */
 | |
| int
 | |
| mp_prime_fermat (mp_int * a, mp_int * b, int *result)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     err;
 | |
| 
 | |
|   /* default to fail */
 | |
|   *result = 0;
 | |
| 
 | |
|   /* init t */
 | |
|   if ((err = mp_init (&t)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
| 
 | |
|   /* compute t = b^a mod a */
 | |
|   if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
 | |
|     goto __T;
 | |
|   }
 | |
| 
 | |
|   /* is it equal to b? */
 | |
|   if (mp_cmp (&t, b) == MP_EQ) {
 | |
|     *result = 1;
 | |
|   }
 | |
| 
 | |
|   err = MP_OKAY;
 | |
| __T:mp_clear (&t);
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_prime_fermat.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_is_divisible.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* determines if an integers is divisible by one of the first 256 primes or not
 | |
|  *
 | |
|  * sets result to 0 if not, 1 if yes
 | |
|  */
 | |
| int
 | |
| mp_prime_is_divisible (mp_int * a, int *result)
 | |
| {
 | |
|   int     err, ix;
 | |
|   mp_digit res;
 | |
| 
 | |
|   /* default to not */
 | |
|   *result = 0;
 | |
| 
 | |
|   for (ix = 0; ix < PRIME_SIZE; ix++) {
 | |
|     /* is it equal to the prime? */
 | |
|     if (mp_cmp_d (a, __prime_tab[ix]) == MP_EQ) {
 | |
|       *result = 1;
 | |
|       return MP_OKAY;
 | |
|     }
 | |
| 
 | |
|     /* what is a mod __prime_tab[ix] */
 | |
|     if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) {
 | |
|       return err;
 | |
|     }
 | |
| 
 | |
|     /* is the residue zero? */
 | |
|     if (res == 0) {
 | |
|       *result = 1;
 | |
|       return MP_OKAY;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_prime_is_divisible.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_is_prime.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* performs a variable number of rounds of Miller-Rabin
 | |
|  *
 | |
|  * Probability of error after t rounds is no more than
 | |
|  * (1/4)^t when 1 <= t <= 256
 | |
|  *
 | |
|  * Sets result to 1 if probably prime, 0 otherwise
 | |
|  */
 | |
| int
 | |
| mp_prime_is_prime (mp_int * a, int t, int *result)
 | |
| {
 | |
|   mp_int  b;
 | |
|   int     ix, err, res;
 | |
| 
 | |
|   /* default to no */
 | |
|   *result = 0;
 | |
| 
 | |
|   /* valid value of t? */
 | |
|   if (t < 1 || t > PRIME_SIZE) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* is the input equal to one of the primes in the table? */
 | |
|   for (ix = 0; ix < PRIME_SIZE; ix++) {
 | |
|       if (mp_cmp_d(a, __prime_tab[ix]) == MP_EQ) {
 | |
|          *result = 1;
 | |
|          return MP_OKAY;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* first perform trial division */
 | |
|   if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
|   if (res == 1) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* now perform the miller-rabin rounds */
 | |
|   if ((err = mp_init (&b)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < t; ix++) {
 | |
|     /* set the prime */
 | |
|     mp_set (&b, __prime_tab[ix]);
 | |
| 
 | |
|     if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
 | |
|       goto __B;
 | |
|     }
 | |
| 
 | |
|     if (res == 0) {
 | |
|       goto __B;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* passed the test */
 | |
|   *result = 1;
 | |
| __B:mp_clear (&b);
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_prime_is_prime.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_miller_rabin.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* Miller-Rabin test of "a" to the base of "b" as described in 
 | |
|  * HAC pp. 139 Algorithm 4.24
 | |
|  *
 | |
|  * Sets result to 0 if definitely composite or 1 if probably prime.
 | |
|  * Randomly the chance of error is no more than 1/4 and often 
 | |
|  * very much lower.
 | |
|  */
 | |
| int
 | |
| mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
 | |
| {
 | |
|   mp_int  n1, y, r;
 | |
|   int     s, j, err;
 | |
| 
 | |
|   /* default */
 | |
|   *result = 0;
 | |
| 
 | |
|   /* get n1 = a - 1 */
 | |
|   if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
|   if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
 | |
|     goto __N1;
 | |
|   }
 | |
| 
 | |
|   /* set 2^s * r = n1 */
 | |
|   if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
 | |
|     goto __N1;
 | |
|   }
 | |
|   s = 0;
 | |
|   while (mp_iseven (&r) == 1) {
 | |
|     ++s;
 | |
|     if ((err = mp_div_2 (&r, &r)) != MP_OKAY) {
 | |
|       goto __R;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* compute y = b^r mod a */
 | |
|   if ((err = mp_init (&y)) != MP_OKAY) {
 | |
|     goto __R;
 | |
|   }
 | |
|   if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
 | |
|     goto __Y;
 | |
|   }
 | |
| 
 | |
|   /* if y != 1 and y != n1 do */
 | |
|   if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
 | |
|     j = 1;
 | |
|     /* while j <= s-1 and y != n1 */
 | |
|     while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
 | |
|       if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
 | |
|     goto __Y;
 | |
|       }
 | |
| 
 | |
|       /* if y == 1 then composite */
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ) {
 | |
|     goto __Y;
 | |
|       }
 | |
| 
 | |
|       ++j;
 | |
|     }
 | |
| 
 | |
|     /* if y != n1 then composite */
 | |
|     if (mp_cmp (&y, &n1) != MP_EQ) {
 | |
|       goto __Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* probably prime now */
 | |
|   *result = 1;
 | |
| __Y:mp_clear (&y);
 | |
| __R:mp_clear (&r);
 | |
| __N1:mp_clear (&n1);
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_prime_miller_rabin.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_next_prime.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* finds the next prime after the number "a" using "t" trials
 | |
|  * of Miller-Rabin.
 | |
|  */
 | |
| int mp_prime_next_prime(mp_int *a, int t)
 | |
| {
 | |
|    int err, res;
 | |
| 
 | |
|    if (mp_iseven(a) == 1) {
 | |
|       /* force odd */
 | |
|       if ((err = mp_add_d(a, 1, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    } else {
 | |
|       /* force to next odd number */
 | |
|       if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       /* is this prime? */
 | |
|       if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
| 
 | |
|       if (res == 1) {
 | |
|          break;
 | |
|       }
 | |
| 
 | |
|       /* add two, next candidate */
 | |
|       if ((err = mp_add_d(a, 2, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_prime_next_prime.c */
 | |
| 
 | |
| /* Start: bn_mp_rand.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* makes a pseudo-random int of a given size */
 | |
| int
 | |
| mp_rand (mp_int * a, int digits)
 | |
| {
 | |
|   int     res;
 | |
|   mp_digit d;
 | |
| 
 | |
|   mp_zero (a);
 | |
|   if (digits <= 0) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* first place a random non-zero digit */
 | |
|   do {
 | |
|     d = ((mp_digit) abs (rand ()));
 | |
|   } while (d == 0);
 | |
| 
 | |
|   if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   while (digits-- > 0) {
 | |
|     if ((res = mp_lshd (a, 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_rand.c */
 | |
| 
 | |
| /* Start: bn_mp_read_signed_bin.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* read signed bin, big endian, first byte is 0==positive or 1==negative */
 | |
| int
 | |
| mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   a->sign = ((b[0] == (unsigned char) 0) ? MP_ZPOS : MP_NEG);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_read_signed_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_read_unsigned_bin.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* reads a unsigned char array, assumes the msb is stored first [big endian] */
 | |
| int
 | |
| mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
 | |
| {
 | |
|   int     res;
 | |
|   mp_zero (a);
 | |
|   while (c-- > 0) {
 | |
|     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     if (DIGIT_BIT != 7) {
 | |
|       a->dp[0] |= *b++;
 | |
|       a->used += 1;
 | |
|     } else {
 | |
|       a->dp[0] = (*b & MP_MASK);
 | |
|       a->dp[1] |= ((*b++ >> 7U) & 1);
 | |
|       a->used += 2;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (a);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_read_unsigned_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* reduces x mod m, assumes 0 < x < m**2, mu is 
 | |
|  * precomputed via mp_reduce_setup.
 | |
|  * From HAC pp.604 Algorithm 14.42
 | |
|  */
 | |
| int
 | |
| mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
 | |
| {
 | |
|   mp_int  q;
 | |
|   int     res, um = m->used;
 | |
| 
 | |
|   /* q = x */
 | |
|   if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* q1 = x / b**(k-1)  */
 | |
|   mp_rshd (&q, um - 1);         
 | |
| 
 | |
|   /* according to HAC this optimization is ok */
 | |
|   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
 | |
|     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   } else {
 | |
|     if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* q3 = q2 / b**(k+1) */
 | |
|   mp_rshd (&q, um + 1);         
 | |
| 
 | |
|   /* x = x mod b**(k+1), quick (no division) */
 | |
|   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* q = q * m mod b**(k+1), quick (no division) */
 | |
|   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* x = x - q */
 | |
|   if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* If x < 0, add b**(k+1) to it */
 | |
|   if (mp_cmp_d (x, 0) == MP_LT) {
 | |
|     mp_set (&q, 1);
 | |
|     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|     if ((res = mp_add (x, &q, x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* Back off if it's too big */
 | |
|   while (mp_cmp (x, m) != MP_LT) {
 | |
|     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
|   
 | |
| CLEANUP:
 | |
|   mp_clear (&q);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_reduce.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_2k.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* reduces a modulo n where n is of the form 2**p - k */
 | |
| int
 | |
| mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
 | |
| {
 | |
|    mp_int q;
 | |
|    int    p, res;
 | |
|    
 | |
|    if ((res = mp_init(&q)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
|    
 | |
|    p = mp_count_bits(n);    
 | |
| top:
 | |
|    /* q = a/2**p, a = a mod 2**p */
 | |
|    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
|    if (k != 1) {
 | |
|       /* q = q * k */
 | |
|       if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) { 
 | |
|          goto ERR;
 | |
|       }
 | |
|    }
 | |
|    
 | |
|    /* a = a + q */
 | |
|    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
|    
 | |
|    if (mp_cmp_mag(a, n) != MP_LT) {
 | |
|       s_mp_sub(a, n, a);
 | |
|       goto top;
 | |
|    }
 | |
|    
 | |
| ERR:
 | |
|    mp_clear(&q);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_reduce_2k.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_2k_setup.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* determines the setup value */
 | |
| int 
 | |
| mp_reduce_2k_setup(mp_int *a, mp_digit *d)
 | |
| {
 | |
|    int res, p;
 | |
|    mp_int tmp;
 | |
|    
 | |
|    if ((res = mp_init(&tmp)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
|    
 | |
|    p = mp_count_bits(a);
 | |
|    if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
 | |
|       mp_clear(&tmp);
 | |
|       return res;
 | |
|    }
 | |
|    
 | |
|    if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
 | |
|       mp_clear(&tmp);
 | |
|       return res;
 | |
|    }
 | |
|    
 | |
|    *d = tmp.dp[0];
 | |
|    mp_clear(&tmp);
 | |
|    return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_reduce_2k_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_is_2k.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* determines if mp_reduce_2k can be used */
 | |
| int 
 | |
| mp_reduce_is_2k(mp_int *a)
 | |
| {
 | |
|    int ix, iy;
 | |
|    
 | |
|    if (a->used == 0) {
 | |
|       return 0;
 | |
|    } else if (a->used == 1) {
 | |
|       return 1;
 | |
|    } else if (a->used > 1) {
 | |
|       iy = mp_count_bits(a);
 | |
|       for (ix = DIGIT_BIT; ix < iy; ix++) {
 | |
|           if ((a->dp[ix/DIGIT_BIT] & 
 | |
|               ((mp_digit)1 << (mp_digit)(ix % DIGIT_BIT))) == 0) {
 | |
|              return 0;
 | |
|           }
 | |
|       }
 | |
|    }
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_reduce_is_2k.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_setup.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* pre-calculate the value required for Barrett reduction
 | |
|  * For a given modulus "b" it calulates the value required in "a"
 | |
|  */
 | |
| int
 | |
| mp_reduce_setup (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
|   
 | |
|   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   return mp_div (a, b, a, NULL);
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_reduce_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_rshd.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* shift right a certain amount of digits */
 | |
| void
 | |
| mp_rshd (mp_int * a, int b)
 | |
| {
 | |
|   int     x;
 | |
| 
 | |
|   /* if b <= 0 then ignore it */
 | |
|   if (b <= 0) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* if b > used then simply zero it and return */
 | |
|   if (a->used <= b) {
 | |
|     mp_zero (a);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_digit *bottom, *top;
 | |
| 
 | |
|     /* shift the digits down */
 | |
| 
 | |
|     /* bottom */
 | |
|     bottom = a->dp;
 | |
| 
 | |
|     /* top [offset into digits] */
 | |
|     top = a->dp + b;
 | |
| 
 | |
|     /* this is implemented as a sliding window where 
 | |
|      * the window is b-digits long and digits from 
 | |
|      * the top of the window are copied to the bottom
 | |
|      *
 | |
|      * e.g.
 | |
| 
 | |
|      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
 | |
|                  /\                   |      ---->
 | |
|                   \-------------------/      ---->
 | |
|      */
 | |
|     for (x = 0; x < (a->used - b); x++) {
 | |
|       *bottom++ = *top++;
 | |
|     }
 | |
| 
 | |
|     /* zero the top digits */
 | |
|     for (; x < a->used; x++) {
 | |
|       *bottom++ = 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   /* remove excess digits */
 | |
|   a->used -= b;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_rshd.c */
 | |
| 
 | |
| /* Start: bn_mp_set.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* set to a digit */
 | |
| void
 | |
| mp_set (mp_int * a, mp_digit b)
 | |
| {
 | |
|   mp_zero (a);
 | |
|   a->dp[0] = b & MP_MASK;
 | |
|   a->used = (a->dp[0] != 0) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_set.c */
 | |
| 
 | |
| /* Start: bn_mp_set_int.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* set a 32-bit const */
 | |
| int
 | |
| mp_set_int (mp_int * a, unsigned int b)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   mp_zero (a);
 | |
|   /* set four bits at a time */
 | |
|   for (x = 0; x < 8; x++) {
 | |
|     /* shift the number up four bits */
 | |
|     if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     /* OR in the top four bits of the source */
 | |
|     a->dp[0] |= (b >> 28) & 15;
 | |
| 
 | |
|     /* shift the source up to the next four bits */
 | |
|     b <<= 4;
 | |
| 
 | |
|     /* ensure that digits are not clamped off */
 | |
|     a->used += 1;
 | |
|   }
 | |
|   mp_clamp (a);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_set_int.c */
 | |
| 
 | |
| /* Start: bn_mp_shrink.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* shrink a bignum */
 | |
| int
 | |
| mp_shrink (mp_int * a)
 | |
| {
 | |
|   if (a->alloc != a->used) {
 | |
|     if ((a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
 | |
|       return MP_MEM;
 | |
|     }
 | |
|     a->alloc = a->used;
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_shrink.c */
 | |
| 
 | |
| /* Start: bn_mp_signed_bin_size.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* get the size for an signed equivalent */
 | |
| int
 | |
| mp_signed_bin_size (mp_int * a)
 | |
| {
 | |
|   return 1 + mp_unsigned_bin_size (a);
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_signed_bin_size.c */
 | |
| 
 | |
| /* Start: bn_mp_sqr.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* computes b = a*a */
 | |
| int
 | |
| mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
|   if (a->used >= TOOM_SQR_CUTOFF) {
 | |
|     res = mp_toom_sqr(a, b);
 | |
|   } else if (a->used >= KARATSUBA_SQR_CUTOFF) {
 | |
|     res = mp_karatsuba_sqr (a, b);
 | |
|   } else {
 | |
| 
 | |
|     /* can we use the fast multiplier? */
 | |
|     if ((a->used * 2 + 1) < MP_WARRAY && 
 | |
|          a->used < 
 | |
|          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
 | |
|       res = fast_s_mp_sqr (a, b);
 | |
|     } else {
 | |
|       res = s_mp_sqr (a, b);
 | |
|     }
 | |
|   }
 | |
|   b->sign = MP_ZPOS;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_sqrmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* c = a * a (mod b) */
 | |
| int
 | |
| mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_sqr (a, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, b, c);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_sqrmod.c */
 | |
| 
 | |
| /* Start: bn_mp_sub.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* high level subtraction (handles signs) */
 | |
| int
 | |
| mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     sa, sb, res;
 | |
| 
 | |
|   sa = a->sign;
 | |
|   sb = b->sign;
 | |
| 
 | |
|   if (sa != sb) {
 | |
|     /* subtract a negative from a positive, OR */
 | |
|     /* subtract a positive from a negative. */
 | |
|     /* In either case, ADD their magnitudes, */
 | |
|     /* and use the sign of the first number. */
 | |
|     c->sign = sa;
 | |
|     res = s_mp_add (a, b, c);
 | |
|   } else {
 | |
|     /* subtract a positive from a positive, OR */
 | |
|     /* subtract a negative from a negative. */
 | |
|     /* First, take the difference between their */
 | |
|     /* magnitudes, then... */
 | |
|     if (mp_cmp_mag (a, b) != MP_LT) {
 | |
|       /* Copy the sign from the first */
 | |
|       c->sign = sa;
 | |
|       /* The first has a larger or equal magnitude */
 | |
|       res = s_mp_sub (a, b, c);
 | |
|     } else {
 | |
|       /* The result has the *opposite* sign from */
 | |
|       /* the first number. */
 | |
|       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | |
|       /* The second has a larger magnitude */
 | |
|       res = s_mp_sub (b, a, c);
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_mp_sub.c */
 | |
| 
 | |
| /* Start: bn_mp_sub_d.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* single digit subtraction */
 | |
| int
 | |
| mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   mp_set (&t, b);
 | |
|   res = mp_sub (a, &t, c);
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_sub_d.c */
 | |
| 
 | |
| /* Start: bn_mp_submod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* d = a - b (mod c) */
 | |
| int
 | |
| mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_submod.c */
 | |
| 
 | |
| /* Start: bn_mp_to_signed_bin.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* store in signed [big endian] format */
 | |
| int
 | |
| mp_to_signed_bin (mp_int * a, unsigned char *b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_to_signed_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_to_unsigned_bin.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* store in unsigned [big endian] format */
 | |
| int
 | |
| mp_to_unsigned_bin (mp_int * a, unsigned char *b)
 | |
| {
 | |
|   int     x, res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   x = 0;
 | |
|   while (mp_iszero (&t) == 0) {
 | |
|     if (DIGIT_BIT != 7) {
 | |
|       b[x++] = (unsigned char) (t.dp[0] & 255);
 | |
|     } else {
 | |
|       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
 | |
|     }
 | |
|     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   bn_reverse (b, x);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_to_unsigned_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_toom_mul.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* multiplication using the Toom-Cook 3-way algorithm */
 | |
| int 
 | |
| mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|     mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
 | |
|     int res, B;
 | |
|         
 | |
|     /* init temps */
 | |
|     if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
 | |
|                              &a0, &a1, &a2, &b0, &b1, 
 | |
|                              &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
 | |
|        return res;
 | |
|     }
 | |
|     
 | |
|     /* B */
 | |
|     B = MIN(a->used, b->used) / 3;
 | |
|     
 | |
|     /* a = a2 * B**2 + a1 * B + a0 */
 | |
|     if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy(a, &a1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a1, B);
 | |
|     mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
 | |
| 
 | |
|     if ((res = mp_copy(a, &a2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a2, B*2);
 | |
|     
 | |
|     /* b = b2 * B**2 + b1 * B + b0 */
 | |
|     if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy(b, &b1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&b1, B);
 | |
|     mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
 | |
| 
 | |
|     if ((res = mp_copy(b, &b2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&b2, B*2);
 | |
|     
 | |
|     /* w0 = a0*b0 */
 | |
|     if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* w4 = a2 * b2 */
 | |
|     if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
 | |
|     if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
 | |
|     if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
| 
 | |
|     /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
 | |
|     if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* now solve the matrix 
 | |
|     
 | |
|        0  0  0  0  1
 | |
|        1  2  4  8  16
 | |
|        1  1  1  1  1
 | |
|        16 8  4  2  1
 | |
|        1  0  0  0  0
 | |
|        
 | |
|        using 12 subtractions, 4 shifts, 
 | |
|               2 small divisions and 1 small multiplication 
 | |
|      */
 | |
|      
 | |
|      /* r1 - r4 */
 | |
|      if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r0 */
 | |
|      if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/2 */
 | |
|      if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/2 */
 | |
|      if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r2 - r0 - r4 */
 | |
|      if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - 8r0 */
 | |
|      if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - 8r4 */
 | |
|      if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* 3r2 - r1 - r3 */
 | |
|      if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/3 */
 | |
|      if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/3 */
 | |
|      if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      
 | |
|      /* at this point shift W[n] by B*n */
 | |
|      if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }     
 | |
|      
 | |
|      if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }     
 | |
|      
 | |
| ERR:
 | |
|      mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
 | |
|                     &a0, &a1, &a2, &b0, &b1, 
 | |
|                     &b2, &tmp1, &tmp2, NULL);
 | |
|      return res;
 | |
| }     
 | |
|      
 | |
| 
 | |
| /* End: bn_mp_toom_mul.c */
 | |
| 
 | |
| /* Start: bn_mp_toom_sqr.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* squaring using Toom-Cook 3-way algorithm */
 | |
| int 
 | |
| mp_toom_sqr(mp_int *a, mp_int *b)
 | |
| {
 | |
|     mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
 | |
|     int res, B;
 | |
|         
 | |
|     /* init temps */
 | |
|     if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
 | |
|        return res;
 | |
|     }
 | |
| 
 | |
|     /* B */
 | |
|     B = a->used / 3;
 | |
|     
 | |
|     /* a = a2 * B^2 + a1 * B + a0 */
 | |
|     if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy(a, &a1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a1, B);
 | |
|     mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
 | |
| 
 | |
|     if ((res = mp_copy(a, &a2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a2, B*2);
 | |
|         
 | |
|     /* w0 = a0*a0 */
 | |
|     if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* w4 = a2 * a2 */
 | |
|     if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* w1 = (a2 + 2(a1 + 2a0))**2 */
 | |
|     if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* w3 = (a0 + 2(a1 + 2a2))**2 */
 | |
|     if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
| 
 | |
|     /* w2 = (a2 + a1 + a0)**2 */
 | |
|     if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     
 | |
|     /* now solve the matrix 
 | |
|     
 | |
|        0  0  0  0  1
 | |
|        1  2  4  8  16
 | |
|        1  1  1  1  1
 | |
|        16 8  4  2  1
 | |
|        1  0  0  0  0
 | |
|        
 | |
|        using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
 | |
|      */
 | |
|      
 | |
|      /* r1 - r4 */
 | |
|      if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r0 */
 | |
|      if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/2 */
 | |
|      if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/2 */
 | |
|      if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r2 - r0 - r4 */
 | |
|      if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - 8r0 */
 | |
|      if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - 8r4 */
 | |
|      if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* 3r2 - r1 - r3 */
 | |
|      if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/3 */
 | |
|      if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/3 */
 | |
|      if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      
 | |
|      /* at this point shift W[n] by B*n */
 | |
|      if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }     
 | |
|      
 | |
|      if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }     
 | |
|      
 | |
| ERR:
 | |
|      mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
 | |
|      return res;
 | |
| }     
 | |
|      
 | |
| 
 | |
| /* End: bn_mp_toom_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_unsigned_bin_size.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* get the size for an unsigned equivalent */
 | |
| int
 | |
| mp_unsigned_bin_size (mp_int * a)
 | |
| {
 | |
|   int     size = mp_count_bits (a);
 | |
|   return (size / 8 + ((size & 7) != 0 ? 1 : 0));
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_unsigned_bin_size.c */
 | |
| 
 | |
| /* Start: bn_mp_xor.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* XOR two ints together */
 | |
| int
 | |
| mp_xor (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, px;
 | |
|   mp_int  t, *x;
 | |
| 
 | |
|   if (a->used > b->used) {
 | |
|     if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = b->used;
 | |
|     x = b;
 | |
|   } else {
 | |
|     if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = a->used;
 | |
|     x = a;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < px; ix++) {
 | |
|     t.dp[ix] ^= x->dp[ix];
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (c, &t);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_xor.c */
 | |
| 
 | |
| /* Start: bn_mp_zero.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* set to zero */
 | |
| void
 | |
| mp_zero (mp_int * a)
 | |
| {
 | |
|   a->sign = MP_ZPOS;
 | |
|   a->used = 0;
 | |
|   memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
 | |
| }
 | |
| 
 | |
| /* End: bn_mp_zero.c */
 | |
| 
 | |
| /* Start: bn_prime_tab.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| const mp_digit __prime_tab[] = {
 | |
|   0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
 | |
|   0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
 | |
|   0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
 | |
|   0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
 | |
| #ifndef MP_8BIT
 | |
|   0x0083,
 | |
|   0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
 | |
|   0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
 | |
|   0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
 | |
|   0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
 | |
| 
 | |
|   0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
 | |
|   0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
 | |
|   0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
 | |
|   0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
 | |
|   0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
 | |
|   0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
 | |
|   0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
 | |
|   0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
 | |
| 
 | |
|   0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
 | |
|   0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
 | |
|   0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
 | |
|   0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
 | |
|   0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
 | |
|   0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
 | |
|   0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
 | |
|   0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
 | |
| 
 | |
|   0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
 | |
|   0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
 | |
|   0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
 | |
|   0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
 | |
|   0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
 | |
|   0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
 | |
|   0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
 | |
|   0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* End: bn_prime_tab.c */
 | |
| 
 | |
| /* Start: bn_radix.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* chars used in radix conversions */
 | |
| static const char *s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
 | |
| 
 | |
| /* read a string [ASCII] in a given radix */
 | |
| int
 | |
| mp_read_radix (mp_int * a, char *str, int radix)
 | |
| {
 | |
|   int     y, res, neg;
 | |
|   char    ch;
 | |
| 
 | |
|   if (radix < 2 || radix > 64) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   if (*str == '-') {
 | |
|     ++str;
 | |
|     neg = MP_NEG;
 | |
|   } else {
 | |
|     neg = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   mp_zero (a);
 | |
|   while (*str) {
 | |
|     ch = (char) ((radix < 36) ? toupper (*str) : *str);
 | |
|     for (y = 0; y < 64; y++) {
 | |
|       if (ch == s_rmap[y]) {
 | |
|     break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (y < radix) {
 | |
|       if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|       }
 | |
|       if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|       }
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     ++str;
 | |
|   }
 | |
|   a->sign = neg;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* stores a bignum as a ASCII string in a given radix (2..64) */
 | |
| int
 | |
| mp_toradix (mp_int * a, char *str, int radix)
 | |
| {
 | |
|   int     res, digs;
 | |
|   mp_int  t;
 | |
|   mp_digit d;
 | |
|   char   *_s = str;
 | |
| 
 | |
|   if (radix < 2 || radix > 64) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
|   
 | |
|   /* quick out if its zero */
 | |
|   if (mp_iszero(a) == 1) {
 | |
|      *str++ = '0';
 | |
|      *str = '\0';
 | |
|      return MP_OKAY;
 | |
|   }
 | |
|   
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if (t.sign == MP_NEG) {
 | |
|     ++_s;
 | |
|     *str++ = '-';
 | |
|     t.sign = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   digs = 0;
 | |
|   while (mp_iszero (&t) == 0) {
 | |
|     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|     *str++ = s_rmap[d];
 | |
|     ++digs;
 | |
|   }
 | |
|   bn_reverse ((unsigned char *)_s, digs);
 | |
|   *str++ = '\0';
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* returns size of ASCII reprensentation */
 | |
| int
 | |
| mp_radix_size (mp_int * a, int radix)
 | |
| {
 | |
|   int     res, digs;
 | |
|   mp_int  t;
 | |
|   mp_digit d;
 | |
| 
 | |
|   /* special case for binary */
 | |
|   if (radix == 2) {
 | |
|     return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
 | |
|   }
 | |
| 
 | |
|   if (radix < 2 || radix > 64) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   digs = 0;
 | |
|   if (t.sign == MP_NEG) {
 | |
|     ++digs;
 | |
|     t.sign = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   while (mp_iszero (&t) == 0) {
 | |
|     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return 0;
 | |
|     }
 | |
|     ++digs;
 | |
|   }
 | |
|   mp_clear (&t);
 | |
|   return digs + 1;
 | |
| }
 | |
| 
 | |
| /* read a bigint from a file stream in ASCII */
 | |
| int mp_fread(mp_int *a, int radix, FILE *stream)
 | |
| {
 | |
|    int err, ch, neg, y;
 | |
|    
 | |
|    /* clear a */
 | |
|    mp_zero(a);
 | |
|    
 | |
|    /* if first digit is - then set negative */
 | |
|    ch = fgetc(stream);
 | |
|    if (ch == '-') {
 | |
|       neg = MP_NEG;
 | |
|       ch = fgetc(stream);
 | |
|    } else {
 | |
|       neg = MP_ZPOS;
 | |
|    }
 | |
|    
 | |
|    for (;;) {
 | |
|       /* find y in the radix map */
 | |
|       for (y = 0; y < radix; y++) {
 | |
|           if (s_rmap[y] == ch) {
 | |
|              break;
 | |
|           }
 | |
|       }
 | |
|       if (y == radix) {
 | |
|          break;
 | |
|       }
 | |
|       
 | |
|       /* shift up and add */
 | |
|       if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|       if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|       
 | |
|       ch = fgetc(stream);
 | |
|    }
 | |
|    if (mp_cmp_d(a, 0) != MP_EQ) {
 | |
|       a->sign = neg;
 | |
|    }
 | |
|    
 | |
|    return MP_OKAY;
 | |
| }
 | |
| 
 | |
| int mp_fwrite(mp_int *a, int radix, FILE *stream)
 | |
| {
 | |
|    char *buf;
 | |
|    int err, len, x;
 | |
|    
 | |
|    len = mp_radix_size(a, radix);
 | |
|    if (len == 0) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
|    
 | |
|    buf = malloc(len);
 | |
|    if (buf == NULL) {
 | |
|       return MP_MEM;
 | |
|    }
 | |
|    
 | |
|    if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
 | |
|       free(buf);
 | |
|       return err;
 | |
|    }
 | |
|    
 | |
|    for (x = 0; x < len; x++) {
 | |
|        if (fputc(buf[x], stream) == EOF) {
 | |
|           free(buf);
 | |
|           return MP_VAL;
 | |
|        }
 | |
|    }
 | |
|    
 | |
|    free(buf);
 | |
|    return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_radix.c */
 | |
| 
 | |
| /* Start: bn_reverse.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* reverse an array, used for radix code */
 | |
| void
 | |
| bn_reverse (unsigned char *s, int len)
 | |
| {
 | |
|   int     ix, iy;
 | |
|   unsigned char t;
 | |
| 
 | |
|   ix = 0;
 | |
|   iy = len - 1;
 | |
|   while (ix < iy) {
 | |
|     t     = s[ix];
 | |
|     s[ix] = s[iy];
 | |
|     s[iy] = t;
 | |
|     ++ix;
 | |
|     --iy;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* End: bn_reverse.c */
 | |
| 
 | |
| /* Start: bn_s_mp_add.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* low level addition, based on HAC pp.594, Algorithm 14.7 */
 | |
| int
 | |
| s_mp_add (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int *x;
 | |
|   int     olduse, res, min, max;
 | |
| 
 | |
|   /* find sizes, we let |a| <= |b| which means we have to sort
 | |
|    * them.  "x" will point to the input with the most digits
 | |
|    */
 | |
|   if (a->used > b->used) {
 | |
|     min = b->used;
 | |
|     max = a->used;
 | |
|     x = a;
 | |
|   } else {
 | |
|     min = a->used;
 | |
|     max = b->used;
 | |
|     x = b;
 | |
|   }
 | |
| 
 | |
|   /* init result */
 | |
|   if (c->alloc < max + 1) {
 | |
|     if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* get old used digit count and set new one */
 | |
|   olduse = c->used;
 | |
|   c->used = max + 1;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | |
|     register int i;
 | |
| 
 | |
|     /* alias for digit pointers */
 | |
| 
 | |
|     /* first input */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* second input */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* destination */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* zero the carry */
 | |
|     u = 0;
 | |
|     for (i = 0; i < min; i++) {
 | |
|       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
 | |
|       *tmpc = *tmpa++ + *tmpb++ + u;
 | |
| 
 | |
|       /* U = carry bit of T[i] */
 | |
|       u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | |
| 
 | |
|       /* take away carry bit from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* now copy higher words if any, that is in A+B 
 | |
|      * if A or B has more digits add those in 
 | |
|      */
 | |
|     if (min != max) {
 | |
|       for (; i < max; i++) {
 | |
|         /* T[i] = X[i] + U */
 | |
|         *tmpc = x->dp[i] + u;
 | |
| 
 | |
|         /* U = carry bit of T[i] */
 | |
|         u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | |
| 
 | |
|         /* take away carry bit from T[i] */
 | |
|         *tmpc++ &= MP_MASK;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* add carry */
 | |
|     *tmpc++ = u;
 | |
| 
 | |
|     /* clear digits above oldused */
 | |
|     for (i = c->used; i < olduse; i++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_s_mp_add.c */
 | |
| 
 | |
| /* Start: bn_s_mp_exptmod.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| int
 | |
| s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 | |
| {
 | |
|   mp_int  M[256], res, mu;
 | |
|   mp_digit buf;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|     if (winsize > 5) {
 | |
|        winsize = 5;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   for (x = 0; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
 | |
|       for (y = 0; y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create mu, used for Barrett reduction */
 | |
|   if ((err = mp_init (&mu)) != MP_OKAY) {
 | |
|     goto __M;
 | |
|   }
 | |
|   if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | |
|     goto __MU;
 | |
|   }
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
|    * The M table contains powers of the base, 
 | |
|    * e.g. M[x] = G**x mod P
 | |
|    *
 | |
|    * The first half of the table is not 
 | |
|    * computed though accept for M[0] and M[1]
 | |
|    */
 | |
|   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | |
|     goto __MU;
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring 
 | |
|    * M[1] (winsize-1) times 
 | |
|    */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto __MU;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], 
 | |
|                        &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto __MU;
 | |
|     }
 | |
|     if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | |
|       goto __MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto __MU;
 | |
|     }
 | |
|     if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
 | |
|       goto __MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto __MU;
 | |
|   }
 | |
|   mp_set (&res, 1);
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       buf = X->dp[digidx--];
 | |
|       bitcnt = (int) DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0)
 | |
|       continue;
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto __MU;
 | |
|       }
 | |
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto __MU;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto __RES;
 | |
|       }
 | |
| 
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto __RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| __RES:mp_clear (&res);
 | |
| __MU:mp_clear (&mu);
 | |
| __M:
 | |
|   for (x = 0; x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| 
 | |
| /* End: bn_s_mp_exptmod.c */
 | |
| 
 | |
| /* Start: bn_s_mp_mul_digs.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* multiplies |a| * |b| and only computes upto digs digits of result
 | |
|  * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
 | |
|  * many digits of output are created.
 | |
|  */
 | |
| int
 | |
| s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, pa, pb, ix, iy;
 | |
|   mp_digit u;
 | |
|   mp_word r;
 | |
|   mp_digit tmpx, *tmpt, *tmpy;
 | |
| 
 | |
|   /* can we use the fast multiplier? */
 | |
|   if (((digs) < MP_WARRAY) &&
 | |
|       MIN (a->used, b->used) < 
 | |
|           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_s_mp_mul_digs (a, b, c, digs);
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = digs;
 | |
| 
 | |
|   /* compute the digits of the product directly */
 | |
|   pa = a->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* set the carry to zero */
 | |
|     u = 0;
 | |
| 
 | |
|     /* limit ourselves to making digs digits of output */
 | |
|     pb = MIN (b->used, digs - ix);
 | |
| 
 | |
|     /* setup some aliases */
 | |
|     /* copy of the digit from a used within the nested loop */
 | |
|     tmpx = a->dp[ix];
 | |
|     
 | |
|     /* an alias for the destination shifted ix places */
 | |
|     tmpt = t.dp + ix;
 | |
|     
 | |
|     /* an alias for the digits of b */
 | |
|     tmpy = b->dp;
 | |
| 
 | |
|     /* compute the columns of the output and propagate the carry */
 | |
|     for (iy = 0; iy < pb; iy++) {
 | |
|       /* compute the column as a mp_word */
 | |
|       r = ((mp_word) *tmpt) + 
 | |
|           ((mp_word) tmpx) * ((mp_word) * tmpy++) + 
 | |
|           ((mp_word) u);
 | |
| 
 | |
|       /* the new column is the lower part of the result */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* get the carry word from the result */
 | |
|       u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* set carry if it is placed below digs */
 | |
|     if (ix + iy < digs) {
 | |
|       *tmpt = u;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, c);
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_s_mp_mul_digs.c */
 | |
| 
 | |
| /* Start: bn_s_mp_mul_high_digs.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* multiplies |a| * |b| and does not compute the lower digs digits
 | |
|  * [meant to get the higher part of the product]
 | |
|  */
 | |
| int
 | |
| s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, pa, pb, ix, iy;
 | |
|   mp_digit u;
 | |
|   mp_word r;
 | |
|   mp_digit tmpx, *tmpt, *tmpy;
 | |
| 
 | |
| 
 | |
|   /* can we use the fast multiplier? */
 | |
|   if (((a->used + b->used + 1) < MP_WARRAY)
 | |
|       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_s_mp_mul_high_digs (a, b, c, digs);
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = a->used + b->used + 1;
 | |
| 
 | |
|   pa = a->used;
 | |
|   pb = b->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* clear the carry */
 | |
|     u = 0;
 | |
| 
 | |
|     /* left hand side of A[ix] * B[iy] */
 | |
|     tmpx = a->dp[ix];
 | |
| 
 | |
|     /* alias to the address of where the digits will be stored */
 | |
|     tmpt = &(t.dp[digs]);
 | |
| 
 | |
|     /* alias for where to read the right hand side from */
 | |
|     tmpy = b->dp + (digs - ix);
 | |
| 
 | |
|     for (iy = digs - ix; iy < pb; iy++) {
 | |
|       /* calculate the double precision result */
 | |
|       r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
 | |
| 
 | |
|       /* get the lower part */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* carry the carry */
 | |
|       u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     *tmpt = u;
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, c);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_s_mp_mul_high_digs.c */
 | |
| 
 | |
| /* Start: bn_s_mp_sqr.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
 | |
| int
 | |
| s_mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, ix, iy, pa;
 | |
|   mp_word r;
 | |
|   mp_digit u, tmpx, *tmpt;
 | |
| 
 | |
|   pa = a->used;
 | |
|   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = 2*pa + 1;
 | |
| 
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* first calculate the digit at 2*ix */
 | |
|     /* calculate double precision result */
 | |
|     r = ((mp_word) t.dp[2*ix]) + 
 | |
|         ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
 | |
| 
 | |
|     /* store lower part in result */
 | |
|     t.dp[2*ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* get the carry */
 | |
|     u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
| 
 | |
|     /* left hand side of A[ix] * A[iy] */
 | |
|     tmpx = a->dp[ix];
 | |
| 
 | |
|     /* alias for where to store the results */
 | |
|     tmpt = t.dp + (2*ix + 1);
 | |
|     
 | |
|     for (iy = ix + 1; iy < pa; iy++) {
 | |
|       /* first calculate the product */
 | |
|       r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
 | |
| 
 | |
|       /* now calculate the double precision result, note we use
 | |
|        * addition instead of *2 since it's easier to optimize
 | |
|        */
 | |
|       r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
 | |
| 
 | |
|       /* store lower part */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* get carry */
 | |
|       u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* propagate upwards */
 | |
|     while (u != ((mp_digit) 0)) {
 | |
|       r = ((mp_word) * tmpt) + ((mp_word) u);
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
|       u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, b);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| /* End: bn_s_mp_sqr.c */
 | |
| 
 | |
| /* Start: bn_s_mp_sub.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
 | |
| int
 | |
| s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     olduse, res, min, max;
 | |
| 
 | |
|   /* find sizes */
 | |
|   min = b->used;
 | |
|   max = a->used;
 | |
| 
 | |
|   /* init result */
 | |
|   if (c->alloc < max) {
 | |
|     if ((res = mp_grow (c, max)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   olduse = c->used;
 | |
|   c->used = max;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | |
|     register int i;
 | |
| 
 | |
|     /* alias for digit pointers */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* set carry to zero */
 | |
|     u = 0;
 | |
|     for (i = 0; i < min; i++) {
 | |
|       /* T[i] = A[i] - B[i] - U */
 | |
|       *tmpc = *tmpa++ - *tmpb++ - u;
 | |
| 
 | |
|       /* U = carry bit of T[i]
 | |
|        * Note this saves performing an AND operation since
 | |
|        * if a carry does occur it will propagate all the way to the
 | |
|        * MSB.  As a result a single shift is enough to get the carry
 | |
|        */
 | |
|       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | |
| 
 | |
|       /* Clear carry from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* now copy higher words if any, e.g. if A has more digits than B  */
 | |
|     for (; i < max; i++) {
 | |
|       /* T[i] = A[i] - U */
 | |
|       *tmpc = *tmpa++ - u;
 | |
| 
 | |
|       /* U = carry bit of T[i] */
 | |
|       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | |
| 
 | |
|       /* Clear carry from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* clear digits above used (since we may not have grown result above) */
 | |
|     for (i = c->used; i < olduse; i++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* End: bn_s_mp_sub.c */
 | |
| 
 | |
| /* Start: bncore.c */
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is library that provides for multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | |
|  */
 | |
| #include <tommath.h>
 | |
| 
 | |
| /* Known optimal configurations
 | |
| 
 | |
|  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
 | |
| -------------------------------------------------------------
 | |
|  Intel P4               /GCC v3.2     /        70/       108
 | |
|  AMD Athlon XP          /GCC v3.2     /       109/       127
 | |
| 
 | |
| */
 | |
| 
 | |
| /* configured for a AMD XP Thoroughbred core with etc/tune.c */
 | |
| int     KARATSUBA_MUL_CUTOFF = 109,      /* Min. number of digits before Karatsuba multiplication is used. */
 | |
|         KARATSUBA_SQR_CUTOFF = 127,      /* Min. number of digits before Karatsuba squaring is used. */
 | |
|         
 | |
|         TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
 | |
|         TOOM_SQR_CUTOFF      = 400; 
 | |
| 
 | |
| /* End: bncore.c */
 | |
| 
 | |
| 
 | |
| /* EOF */
 |