| 
									
										
										
										
											2015-11-12 01:49:07 +01:00
										 |  |  | #include <tommath_private.h>
 | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  | #ifdef BN_MP_SQRTMOD_PRIME_C
 | 
					
						
							|  |  |  | /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * LibTomMath is a library that provides multiple-precision | 
					
						
							|  |  |  |  * integer arithmetic as well as number theoretic functionality. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * The library is free for all purposes without any express | 
					
						
							|  |  |  |  * guarantee it works. | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | /* Tonelli-Shanks algorithm
 | 
					
						
							|  |  |  |  * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 | 
					
						
							|  |  |  |  * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |   int res, legendre; | 
					
						
							|  |  |  |   mp_int t1, C, Q, S, Z, M, T, R, two; | 
					
						
							| 
									
										
										
										
											2015-04-18 19:32:09 +02:00
										 |  |  |   mp_digit i; | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  |   /* first handle the simple cases */ | 
					
						
							|  |  |  |   if (mp_cmp_d(n, 0) == MP_EQ) { | 
					
						
							|  |  |  |     mp_zero(ret); | 
					
						
							|  |  |  |     return MP_OKAY; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  |   if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */ | 
					
						
							|  |  |  |   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res; | 
					
						
							|  |  |  |   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */ | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2015-10-30 18:08:42 -04:00
										 |  |  |   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) { | 
					
						
							| 
									
										
										
										
											2015-11-26 18:43:42 +01:00
										 |  |  |     return res; | 
					
						
							| 
									
										
										
										
											2015-10-30 18:08:42 -04:00
										 |  |  |   } | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  | 
 | 
					
						
							|  |  |  |   /* SPECIAL CASE: if prime mod 4 == 3
 | 
					
						
							|  |  |  |    * compute directly: res = n^(prime+1)/4 mod prime | 
					
						
							|  |  |  |    * Handbook of Applied Cryptography algorithm 3.36 | 
					
						
							|  |  |  |    */ | 
					
						
							|  |  |  |   if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup; | 
					
						
							|  |  |  |   if (i == 3) { | 
					
						
							|  |  |  |     if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup; | 
					
						
							|  |  |  |     if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup; | 
					
						
							|  |  |  |     if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup; | 
					
						
							|  |  |  |     if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup; | 
					
						
							|  |  |  |     res = MP_OKAY; | 
					
						
							|  |  |  |     goto cleanup; | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* NOW: Tonelli-Shanks algorithm */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ | 
					
						
							|  |  |  |   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup; | 
					
						
							|  |  |  |   if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup; | 
					
						
							|  |  |  |   /* Q = prime - 1 */ | 
					
						
							|  |  |  |   mp_zero(&S); | 
					
						
							|  |  |  |   /* S = 0 */ | 
					
						
							| 
									
										
										
										
											2015-11-12 21:54:52 +01:00
										 |  |  |   while (mp_iseven(&Q) != MP_NO) { | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  |     if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup; | 
					
						
							|  |  |  |     /* Q = Q / 2 */ | 
					
						
							|  |  |  |     if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup; | 
					
						
							|  |  |  |     /* S = S + 1 */ | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   /* find a Z such that the Legendre symbol (Z|prime) == -1 */ | 
					
						
							| 
									
										
										
										
											2015-11-13 17:46:32 +01:00
										 |  |  |   if ((res = mp_set_int(&Z, 2)) != MP_OKAY)                     goto cleanup; | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  |   /* Z = 2 */ | 
					
						
							| 
									
										
										
										
											2017-08-29 18:50:19 +02:00
										 |  |  |   while (1) { | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  |     if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup; | 
					
						
							|  |  |  |     if (legendre == -1) break; | 
					
						
							|  |  |  |     if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup; | 
					
						
							|  |  |  |     /* Z = Z + 1 */ | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup; | 
					
						
							|  |  |  |   /* C = Z ^ Q mod prime */ | 
					
						
							|  |  |  |   if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup; | 
					
						
							|  |  |  |   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup; | 
					
						
							|  |  |  |   /* t1 = (Q + 1) / 2 */ | 
					
						
							|  |  |  |   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup; | 
					
						
							|  |  |  |   /* R = n ^ ((Q + 1) / 2) mod prime */ | 
					
						
							|  |  |  |   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup; | 
					
						
							|  |  |  |   /* T = n ^ Q mod prime */ | 
					
						
							|  |  |  |   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup; | 
					
						
							|  |  |  |   /* M = S */ | 
					
						
							|  |  |  |   if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |   res = MP_VAL; | 
					
						
							|  |  |  |   while (1) { | 
					
						
							|  |  |  |     if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup; | 
					
						
							|  |  |  |     i = 0; | 
					
						
							|  |  |  |     while (1) { | 
					
						
							|  |  |  |       if (mp_cmp_d(&t1, 1) == MP_EQ) break; | 
					
						
							|  |  |  |       if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; | 
					
						
							|  |  |  |       i++; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     if (i == 0) { | 
					
						
							| 
									
										
										
										
											2015-11-13 17:46:32 +01:00
										 |  |  |       if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup; | 
					
						
							| 
									
										
										
										
											2015-04-17 22:46:11 +02:00
										 |  |  |       res = MP_OKAY; | 
					
						
							|  |  |  |       goto cleanup; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup; | 
					
						
							|  |  |  |     if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup; | 
					
						
							|  |  |  |     if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup; | 
					
						
							|  |  |  |     /* t1 = 2 ^ (M - i - 1) */ | 
					
						
							|  |  |  |     if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup; | 
					
						
							|  |  |  |     /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ | 
					
						
							|  |  |  |     if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup; | 
					
						
							|  |  |  |     /* C = (t1 * t1) mod prime */ | 
					
						
							|  |  |  |     if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup; | 
					
						
							|  |  |  |     /* R = (R * t1) mod prime */ | 
					
						
							|  |  |  |     if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup; | 
					
						
							|  |  |  |     /* T = (T * C) mod prime */ | 
					
						
							|  |  |  |     mp_set(&M, i); | 
					
						
							|  |  |  |     /* M = i */ | 
					
						
							|  |  |  |   } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | cleanup: | 
					
						
							|  |  |  |   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); | 
					
						
							|  |  |  |   return res; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif
 |