adding bn_mp_sqrtmod_prime.c
This commit is contained in:
		
							parent
							
								
									079b0f65a9
								
							
						
					
					
						commit
						1c85a28372
					
				
							
								
								
									
										122
									
								
								bn_mp_sqrtmod_prime.c
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										122
									
								
								bn_mp_sqrtmod_prime.c
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,122 @@ | |||||||
|  | #include <tommath.h> | ||||||
|  | #ifdef BN_MP_SQRTMOD_PRIME_C | ||||||
|  | /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||||
|  |  * | ||||||
|  |  * LibTomMath is a library that provides multiple-precision | ||||||
|  |  * integer arithmetic as well as number theoretic functionality. | ||||||
|  |  * | ||||||
|  |  * The library is free for all purposes without any express | ||||||
|  |  * guarantee it works. | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | /* Tonelli-Shanks algorithm
 | ||||||
|  |  * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 | ||||||
|  |  * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 | ||||||
|  |  * | ||||||
|  |  */ | ||||||
|  | 
 | ||||||
|  | int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret) | ||||||
|  | { | ||||||
|  |   int res, legendre; | ||||||
|  |   mp_int t1, C, Q, S, Z, M, T, R, two; | ||||||
|  |   unsigned long i; | ||||||
|  | 
 | ||||||
|  |   /* first handle the simple cases */ | ||||||
|  |   if (mp_cmp_d(n, 0) == MP_EQ) { | ||||||
|  |     mp_zero(ret); | ||||||
|  |     return MP_OKAY; | ||||||
|  |   } | ||||||
|  |   if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */ | ||||||
|  |   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res; | ||||||
|  |   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */ | ||||||
|  | 
 | ||||||
|  |   mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); | ||||||
|  | 
 | ||||||
|  |   /* SPECIAL CASE: if prime mod 4 == 3
 | ||||||
|  |    * compute directly: res = n^(prime+1)/4 mod prime | ||||||
|  |    * Handbook of Applied Cryptography algorithm 3.36 | ||||||
|  |    */ | ||||||
|  |   if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup; | ||||||
|  |   if (i == 3) { | ||||||
|  |     if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup; | ||||||
|  |     if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup; | ||||||
|  |     if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup; | ||||||
|  |     if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup; | ||||||
|  |     res = MP_OKAY; | ||||||
|  |     goto cleanup; | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  |   /* NOW: Tonelli-Shanks algorithm */ | ||||||
|  | 
 | ||||||
|  |   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */ | ||||||
|  |   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup; | ||||||
|  |   if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup; | ||||||
|  |   /* Q = prime - 1 */ | ||||||
|  |   mp_zero(&S); | ||||||
|  |   /* S = 0 */ | ||||||
|  |   while (mp_iseven(&Q)) { | ||||||
|  |     if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup; | ||||||
|  |     /* Q = Q / 2 */ | ||||||
|  |     if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup; | ||||||
|  |     /* S = S + 1 */ | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  |   /* find a Z such that the Legendre symbol (Z|prime) == -1 */ | ||||||
|  |   mp_set_int(&Z, 2); | ||||||
|  |   /* Z = 2 */ | ||||||
|  |   while(1) { | ||||||
|  |     if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup; | ||||||
|  |     if (legendre == -1) break; | ||||||
|  |     if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup; | ||||||
|  |     /* Z = Z + 1 */ | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  |   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup; | ||||||
|  |   /* C = Z ^ Q mod prime */ | ||||||
|  |   if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup; | ||||||
|  |   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup; | ||||||
|  |   /* t1 = (Q + 1) / 2 */ | ||||||
|  |   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup; | ||||||
|  |   /* R = n ^ ((Q + 1) / 2) mod prime */ | ||||||
|  |   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup; | ||||||
|  |   /* T = n ^ Q mod prime */ | ||||||
|  |   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup; | ||||||
|  |   /* M = S */ | ||||||
|  |   if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup; | ||||||
|  | 
 | ||||||
|  |   res = MP_VAL; | ||||||
|  |   while (1) { | ||||||
|  |     if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup; | ||||||
|  |     i = 0; | ||||||
|  |     while (1) { | ||||||
|  |       if (mp_cmp_d(&t1, 1) == MP_EQ) break; | ||||||
|  |       if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup; | ||||||
|  |       i++; | ||||||
|  |     } | ||||||
|  |     if (i == 0) { | ||||||
|  |       mp_copy(&R, ret); | ||||||
|  |       res = MP_OKAY; | ||||||
|  |       goto cleanup; | ||||||
|  |     } | ||||||
|  |     if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup; | ||||||
|  |     if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup; | ||||||
|  |     if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup; | ||||||
|  |     /* t1 = 2 ^ (M - i - 1) */ | ||||||
|  |     if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup; | ||||||
|  |     /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */ | ||||||
|  |     if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup; | ||||||
|  |     /* C = (t1 * t1) mod prime */ | ||||||
|  |     if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup; | ||||||
|  |     /* R = (R * t1) mod prime */ | ||||||
|  |     if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup; | ||||||
|  |     /* T = (T * C) mod prime */ | ||||||
|  |     mp_set(&M, i); | ||||||
|  |     /* M = i */ | ||||||
|  |   } | ||||||
|  | 
 | ||||||
|  | cleanup: | ||||||
|  |   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL); | ||||||
|  |   return res; | ||||||
|  | } | ||||||
|  | 
 | ||||||
|  | #endif | ||||||
| @ -430,6 +430,9 @@ int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast); | |||||||
| /* special sqrt algo */ | /* special sqrt algo */ | ||||||
| int mp_sqrt(mp_int *arg, mp_int *ret); | int mp_sqrt(mp_int *arg, mp_int *ret); | ||||||
| 
 | 
 | ||||||
|  | /* special sqrt (mod prime) */ | ||||||
|  | int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret); | ||||||
|  | 
 | ||||||
| /* is number a square? */ | /* is number a square? */ | ||||||
| int mp_is_square(mp_int *arg, int *ret); | int mp_is_square(mp_int *arg, int *ret); | ||||||
| 
 | 
 | ||||||
|  | |||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user