added libtommath-0.34
This commit is contained in:
		
							parent
							
								
									4b7111d96e
								
							
						
					
					
						commit
						3d0fcaab0a
					
				
							
								
								
									
										29
									
								
								bn.tex
									
									
									
									
									
								
							
							
						
						
									
										29
									
								
								bn.tex
									
									
									
									
									
								
							| @ -49,7 +49,7 @@ | ||||
| \begin{document} | ||||
| \frontmatter | ||||
| \pagestyle{empty} | ||||
| \title{LibTomMath User Manual \\ v0.33} | ||||
| \title{LibTomMath User Manual \\ v0.34} | ||||
| \author{Tom St Denis \\ tomstdenis@iahu.ca} | ||||
| \maketitle | ||||
| This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been  | ||||
| @ -263,12 +263,12 @@ are the pros and cons of LibTomMath by comparing it to the math routines from Gn | ||||
| \begin{center} | ||||
| \begin{tabular}{|l|c|c|l|} | ||||
| \hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\ | ||||
| \hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 76.04$ \\ | ||||
| \hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 71.97$ \\ | ||||
| \hline Commented function prototypes & X && GnuPG function names are cryptic. \\ | ||||
| \hline Speed && X & LibTomMath is slower.  \\ | ||||
| \hline Totally free & X & & GPL has unfavourable restrictions.\\ | ||||
| \hline Large function base & X & & GnuPG is barebones. \\ | ||||
| \hline Four modular reduction algorithms & X & & Faster modular exponentiation. \\ | ||||
| \hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\ | ||||
| \hline Portable & X & & GnuPG requires configuration to build. \\ | ||||
| \hline | ||||
| \end{tabular} | ||||
| @ -284,9 +284,12 @@ would require when working with large integers. | ||||
| So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your | ||||
| own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is | ||||
| not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular | ||||
| exponentiations. | ||||
| exponentiations.  It depends largely on the processor, compiler and the moduli being used. | ||||
| 
 | ||||
| Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. | ||||
| Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.  However, | ||||
| on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library | ||||
| that is very flexible, complete and performs well in resource contrained environments.  Fast RSA for example can | ||||
| be performed with as little as 8KB of ram for data (again depending on build options).   | ||||
| 
 | ||||
| \chapter{Getting Started with LibTomMath} | ||||
| \section{Building Programs} | ||||
| @ -809,7 +812,7 @@ mp\_int variables based on their digits only. | ||||
| 
 | ||||
| \index{mp\_cmp\_mag} | ||||
| \begin{alltt} | ||||
| int mp_cmp(mp_int * a, mp_int * b); | ||||
| int mp_cmp_mag(mp_int * a, mp_int * b); | ||||
| \end{alltt} | ||||
| This will compare $a$ to $b$ placing $a$ to the left of $b$.  This function cannot fail and will return one of the | ||||
| three compare codes listed in figure \ref{fig:CMP}. | ||||
| @ -1220,12 +1223,13 @@ int mp_sqr (mp_int * a, mp_int * b); | ||||
| \end{alltt} | ||||
| 
 | ||||
| Will square $a$ and store it in $b$.  Like the case of multiplication there are four different squaring | ||||
| algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms. | ||||
| algorithms all which can be called from mp\_sqr().  It is ideal to use mp\_sqr over mp\_mul when squaring terms because | ||||
| of the speed difference.   | ||||
| 
 | ||||
| \section{Tuning Polynomial Basis Routines} | ||||
| 
 | ||||
| Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that | ||||
| the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectfully they require  | ||||
| the Comba and baseline algorithms use.  At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require  | ||||
| considerably less work.  For example, a 10000-digit multiplication would take roughly 724,000 single precision | ||||
| multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor | ||||
| of 138). | ||||
| @ -1297,14 +1301,14 @@ of $b$.  This algorithm accepts an input $a$ of any range and is not limited by | ||||
| \section{Barrett Reduction} | ||||
| 
 | ||||
| Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve | ||||
| a decent speedup over straight division.  First a $mu$ value must be precomputed with the following function. | ||||
| a decent speedup over straight division.  First a $\mu$ value must be precomputed with the following function. | ||||
| 
 | ||||
| \index{mp\_reduce\_setup} | ||||
| \begin{alltt} | ||||
| int mp_reduce_setup(mp_int *a, mp_int *b); | ||||
| \end{alltt} | ||||
| 
 | ||||
| Given a modulus in $b$ this produces the required $mu$ value in $a$.  For any given modulus this only has to | ||||
| Given a modulus in $b$ this produces the required $\mu$ value in $a$.  For any given modulus this only has to | ||||
| be computed once.  Modular reduction can now be performed with the following. | ||||
| 
 | ||||
| \index{mp\_reduce} | ||||
| @ -1312,7 +1316,7 @@ be computed once.  Modular reduction can now be performed with the following. | ||||
| int mp_reduce(mp_int *a, mp_int *b, mp_int *c); | ||||
| \end{alltt} | ||||
| 
 | ||||
| This will reduce $a$ in place modulo $b$ with the precomputed $mu$ value in $c$.  $a$ must be in the range | ||||
| This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$.  $a$ must be in the range | ||||
| $0 \le a < b^2$. | ||||
| 
 | ||||
| \begin{alltt} | ||||
| @ -1578,7 +1582,8 @@ will return $-2$. | ||||
| This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly.  Since | ||||
| the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large | ||||
| values of $b$.  If particularly large roots are required then a factor method could be used instead.  For example, | ||||
| $a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$. | ||||
| $a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply  | ||||
| $\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$ | ||||
| 
 | ||||
| \chapter{Prime Numbers} | ||||
| \section{Trial Division} | ||||
|  | ||||
| @ -21,8 +21,7 @@ | ||||
|  * Based on slow invmod except this is optimized for the case where b is  | ||||
|  * odd as per HAC Note 14.64 on pp. 610 | ||||
|  */ | ||||
| int | ||||
| fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) | ||||
| int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) | ||||
| { | ||||
|   mp_int  x, y, u, v, B, D; | ||||
|   int     res, neg; | ||||
|  | ||||
| @ -23,8 +23,7 @@ | ||||
|  * | ||||
|  * Based on Algorithm 14.32 on pp.601 of HAC. | ||||
| */ | ||||
| int | ||||
| fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | ||||
| int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | ||||
| { | ||||
|   int     ix, res, olduse; | ||||
|   mp_word W[MP_WARRAY]; | ||||
|  | ||||
| @ -31,8 +31,7 @@ | ||||
|  * Based on Algorithm 14.12 on pp.595 of HAC. | ||||
|  * | ||||
|  */ | ||||
| int | ||||
| fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| { | ||||
|   int     olduse, res, pa, ix, iz; | ||||
|   mp_digit W[MP_WARRAY]; | ||||
| @ -81,7 +80,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
|   } | ||||
| 
 | ||||
|   /* store final carry */ | ||||
|   W[ix] = _W; | ||||
|   W[ix] = _W & MP_MASK; | ||||
| 
 | ||||
|   /* setup dest */ | ||||
|   olduse  = c->used; | ||||
|  | ||||
| @ -24,8 +24,7 @@ | ||||
|  * | ||||
|  * Based on Algorithm 14.12 on pp.595 of HAC. | ||||
|  */ | ||||
| int | ||||
| fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| { | ||||
|   int     olduse, res, pa, ix, iz; | ||||
|   mp_digit W[MP_WARRAY]; | ||||
| @ -72,7 +71,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
|   } | ||||
|    | ||||
|   /* store final carry */ | ||||
|   W[ix] = _W; | ||||
|   W[ix] = _W & MP_MASK; | ||||
| 
 | ||||
|   /* setup dest */ | ||||
|   olduse  = c->used; | ||||
|  | ||||
| @ -101,7 +101,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b) | ||||
|       } | ||||
| 
 | ||||
|       /* store it */ | ||||
|       W[ix] = _W; | ||||
|       W[ix] = _W & MP_MASK; | ||||
| 
 | ||||
|       /* make next carry */ | ||||
|       W1 = _W >> ((mp_word)DIGIT_BIT); | ||||
|  | ||||
| @ -65,21 +65,29 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
| #endif | ||||
|   } | ||||
| 
 | ||||
| /* modified diminished radix reduction */ | ||||
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) | ||||
|   if (mp_reduce_is_2k_l(P) == MP_YES) { | ||||
|      return s_mp_exptmod(G, X, P, Y, 1); | ||||
|   } | ||||
| #endif | ||||
| 
 | ||||
| #ifdef BN_MP_DR_IS_MODULUS_C | ||||
|   /* is it a DR modulus? */ | ||||
|   dr = mp_dr_is_modulus(P); | ||||
| #else | ||||
|   /* default to no */ | ||||
|   dr = 0; | ||||
| #endif | ||||
| 
 | ||||
| #ifdef BN_MP_REDUCE_IS_2K_C | ||||
|   /* if not, is it a uDR modulus? */ | ||||
|   /* if not, is it a unrestricted DR modulus? */ | ||||
|   if (dr == 0) { | ||||
|      dr = mp_reduce_is_2k(P) << 1; | ||||
|   } | ||||
| #endif | ||||
|      | ||||
|   /* if the modulus is odd or dr != 0 use the fast method */ | ||||
|   /* if the modulus is odd or dr != 0 use the montgomery method */ | ||||
| #ifdef BN_MP_EXPTMOD_FAST_C | ||||
|   if (mp_isodd (P) == 1 || dr !=  0) { | ||||
|     return mp_exptmod_fast (G, X, P, Y, dr); | ||||
| @ -87,7 +95,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
| #endif | ||||
| #ifdef BN_S_MP_EXPTMOD_C | ||||
|     /* otherwise use the generic Barrett reduction technique */ | ||||
|     return s_mp_exptmod (G, X, P, Y); | ||||
|     return s_mp_exptmod (G, X, P, Y, 0); | ||||
| #else | ||||
|     /* no exptmod for evens */ | ||||
|     return MP_VAL; | ||||
|  | ||||
| @ -29,8 +29,7 @@ | ||||
|    #define TAB_SIZE 256 | ||||
| #endif | ||||
| 
 | ||||
| int | ||||
| mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||||
| int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||||
| { | ||||
|   mp_int  M[TAB_SIZE], res; | ||||
|   mp_digit buf, mp; | ||||
|  | ||||
| @ -57,8 +57,9 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c) | ||||
|     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | ||||
|   } | ||||
| 
 | ||||
|   /* store final carry [if any] */ | ||||
|   /* store final carry [if any] and increment ix offset  */ | ||||
|   *tmpc++ = u; | ||||
|   ++ix; | ||||
| 
 | ||||
|   /* now zero digits above the top */ | ||||
|   while (ix++ < olduse) { | ||||
|  | ||||
| @ -60,7 +60,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback | ||||
| 
 | ||||
|    /* calc the maskOR_msb */ | ||||
|    maskOR_msb        = 0; | ||||
|    maskOR_msb_offset = (size - 2) >> 3; | ||||
|    maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; | ||||
|    if (flags & LTM_PRIME_2MSB_ON) { | ||||
|       maskOR_msb     |= 1 << ((size - 2) & 7); | ||||
|    } else if (flags & LTM_PRIME_2MSB_OFF) { | ||||
| @ -68,7 +68,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback | ||||
|    }  | ||||
| 
 | ||||
|    /* get the maskOR_lsb */ | ||||
|    maskOR_lsb         = 0; | ||||
|    maskOR_lsb         = 1; | ||||
|    if (flags & LTM_PRIME_BBS) { | ||||
|       maskOR_lsb     |= 3; | ||||
|    } | ||||
|  | ||||
| @ -16,7 +16,7 @@ | ||||
|  */ | ||||
| 
 | ||||
| /* read a string [ASCII] in a given radix */ | ||||
| int mp_read_radix (mp_int * a, char *str, int radix) | ||||
| int mp_read_radix (mp_int * a, const char *str, int radix) | ||||
| { | ||||
|   int     y, res, neg; | ||||
|   char    ch; | ||||
|  | ||||
| @ -19,8 +19,7 @@ | ||||
|  * precomputed via mp_reduce_setup. | ||||
|  * From HAC pp.604 Algorithm 14.42 | ||||
|  */ | ||||
| int | ||||
| mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | ||||
| int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | ||||
| { | ||||
|   mp_int  q; | ||||
|   int     res, um = m->used; | ||||
|  | ||||
| @ -16,8 +16,7 @@ | ||||
|  */ | ||||
| 
 | ||||
| /* reduces a modulo n where n is of the form 2**p - d */ | ||||
| int | ||||
| mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) | ||||
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) | ||||
| { | ||||
|    mp_int q; | ||||
|    int    p, res; | ||||
|  | ||||
							
								
								
									
										58
									
								
								bn_mp_reduce_2k_l.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										58
									
								
								bn_mp_reduce_2k_l.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,58 @@ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_2K_L_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* reduces a modulo n where n is of the form 2**p - d 
 | ||||
|    This differs from reduce_2k since "d" can be larger | ||||
|    than a single digit. | ||||
| */ | ||||
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) | ||||
| { | ||||
|    mp_int q; | ||||
|    int    p, res; | ||||
|     | ||||
|    if ((res = mp_init(&q)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    p = mp_count_bits(n);     | ||||
| top: | ||||
|    /* q = a/2**p, a = a mod 2**p */ | ||||
|    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    /* q = q * d */ | ||||
|    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {  | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    /* a = a + q */ | ||||
|    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    if (mp_cmp_mag(a, n) != MP_LT) { | ||||
|       s_mp_sub(a, n, a); | ||||
|       goto top; | ||||
|    } | ||||
|     | ||||
| ERR: | ||||
|    mp_clear(&q); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
| @ -16,8 +16,7 @@ | ||||
|  */ | ||||
| 
 | ||||
| /* determines the setup value */ | ||||
| int  | ||||
| mp_reduce_2k_setup(mp_int *a, mp_digit *d) | ||||
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d) | ||||
| { | ||||
|    int res, p; | ||||
|    mp_int tmp; | ||||
|  | ||||
							
								
								
									
										40
									
								
								bn_mp_reduce_2k_setup_l.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								bn_mp_reduce_2k_setup_l.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,40 @@ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_2K_SETUP_L_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* determines the setup value */ | ||||
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) | ||||
| { | ||||
|    int    res; | ||||
|    mp_int tmp; | ||||
|     | ||||
|    if ((res = mp_init(&tmp)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
| ERR: | ||||
|    mp_clear(&tmp); | ||||
|    return res; | ||||
| } | ||||
| #endif | ||||
| @ -22,9 +22,9 @@ int mp_reduce_is_2k(mp_int *a) | ||||
|    mp_digit iz; | ||||
|     | ||||
|    if (a->used == 0) { | ||||
|       return 0; | ||||
|       return MP_NO; | ||||
|    } else if (a->used == 1) { | ||||
|       return 1; | ||||
|       return MP_YES; | ||||
|    } else if (a->used > 1) { | ||||
|       iy = mp_count_bits(a); | ||||
|       iz = 1; | ||||
| @ -33,7 +33,7 @@ int mp_reduce_is_2k(mp_int *a) | ||||
|       /* Test every bit from the second digit up, must be 1 */ | ||||
|       for (ix = DIGIT_BIT; ix < iy; ix++) { | ||||
|           if ((a->dp[iw] & iz) == 0) { | ||||
|              return 0; | ||||
|              return MP_NO; | ||||
|           } | ||||
|           iz <<= 1; | ||||
|           if (iz > (mp_digit)MP_MASK) { | ||||
| @ -42,7 +42,7 @@ int mp_reduce_is_2k(mp_int *a) | ||||
|           } | ||||
|       } | ||||
|    } | ||||
|    return 1; | ||||
|    return MP_YES; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
|  | ||||
							
								
								
									
										40
									
								
								bn_mp_reduce_is_2k_l.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								bn_mp_reduce_is_2k_l.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,40 @@ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_IS_2K_L_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* determines if reduce_2k_l can be used */ | ||||
| int mp_reduce_is_2k_l(mp_int *a) | ||||
| { | ||||
|    int ix, iy; | ||||
|     | ||||
|    if (a->used == 0) { | ||||
|       return MP_NO; | ||||
|    } else if (a->used == 1) { | ||||
|       return MP_YES; | ||||
|    } else if (a->used > 1) { | ||||
|       /* if more than half of the digits are -1 we're sold */ | ||||
|       for (iy = ix = 0; ix < a->used; ix++) { | ||||
|           if (a->dp[ix] == MP_MASK) { | ||||
|               ++iy; | ||||
|           } | ||||
|       } | ||||
|       return (iy >= (a->used/2)) ? MP_YES : MP_NO; | ||||
|        | ||||
|    } | ||||
|    return MP_NO; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
| @ -16,8 +16,7 @@ | ||||
|  */ | ||||
| 
 | ||||
| /* store in signed [big endian] format */ | ||||
| int | ||||
| mp_to_signed_bin (mp_int * a, unsigned char *b) | ||||
| int mp_to_signed_bin (mp_int * a, unsigned char *b) | ||||
| { | ||||
|   int     res; | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										27
									
								
								bn_mp_to_signed_bin_n.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								bn_mp_to_signed_bin_n.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,27 @@ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_TO_SIGNED_BIN_N_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* store in signed [big endian] format */ | ||||
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) | ||||
| { | ||||
|    if (*outlen < (unsigned long)mp_signed_bin_size(a)) { | ||||
|       return MP_VAL; | ||||
|    } | ||||
|    *outlen = mp_signed_bin_size(a); | ||||
|    return mp_to_signed_bin(a, b); | ||||
| } | ||||
| #endif | ||||
| @ -16,8 +16,7 @@ | ||||
|  */ | ||||
| 
 | ||||
| /* store in unsigned [big endian] format */ | ||||
| int | ||||
| mp_to_unsigned_bin (mp_int * a, unsigned char *b) | ||||
| int mp_to_unsigned_bin (mp_int * a, unsigned char *b) | ||||
| { | ||||
|   int     x, res; | ||||
|   mp_int  t; | ||||
|  | ||||
							
								
								
									
										27
									
								
								bn_mp_to_unsigned_bin_n.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								bn_mp_to_unsigned_bin_n.c
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,27 @@ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_TO_UNSIGNED_BIN_N_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* store in unsigned [big endian] format */ | ||||
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) | ||||
| { | ||||
|    if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) { | ||||
|       return MP_VAL; | ||||
|    } | ||||
|    *outlen = mp_unsigned_bin_size(a); | ||||
|    return mp_to_unsigned_bin(a, b); | ||||
| } | ||||
| #endif | ||||
| @ -16,8 +16,7 @@ | ||||
|  */ | ||||
| 
 | ||||
| /* get the size for an unsigned equivalent */ | ||||
| int | ||||
| mp_unsigned_bin_size (mp_int * a) | ||||
| int mp_unsigned_bin_size (mp_int * a) | ||||
| { | ||||
|   int     size = mp_count_bits (a); | ||||
|   return (size / 8 + ((size & 7) != 0 ? 1 : 0)); | ||||
|  | ||||
| @ -21,11 +21,12 @@ | ||||
|    #define TAB_SIZE 256 | ||||
| #endif | ||||
| 
 | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||||
| { | ||||
|   mp_int  M[TAB_SIZE], res, mu; | ||||
|   mp_digit buf; | ||||
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | ||||
|   int (*redux)(mp_int*,mp_int*,mp_int*); | ||||
| 
 | ||||
|   /* find window size */ | ||||
|   x = mp_count_bits (X); | ||||
| @ -72,9 +73,18 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|   if ((err = mp_init (&mu)) != MP_OKAY) { | ||||
|     goto LBL_M; | ||||
|   } | ||||
|   if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | ||||
|     goto LBL_MU; | ||||
|   } | ||||
|    | ||||
|   if (redmode == 0) { | ||||
|      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | ||||
|         goto LBL_MU; | ||||
|      } | ||||
|      redux = mp_reduce; | ||||
|   } else { | ||||
|      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_MU; | ||||
|      } | ||||
|      redux = mp_reduce_2k_l; | ||||
|   }     | ||||
| 
 | ||||
|   /* create M table
 | ||||
|    * | ||||
| @ -96,11 +106,14 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|   } | ||||
| 
 | ||||
|   for (x = 0; x < (winsize - 1); x++) { | ||||
|     /* square it */ | ||||
|     if ((err = mp_sqr (&M[1 << (winsize - 1)],  | ||||
|                        &M[1 << (winsize - 1)])) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|     if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | ||||
| 
 | ||||
|     /* reduce modulo P */ | ||||
|     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|   } | ||||
| @ -112,7 +125,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|     if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { | ||||
|     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|   } | ||||
| @ -161,7 +174,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       continue; | ||||
| @ -178,7 +191,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|       } | ||||
| @ -187,7 +200,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
| 
 | ||||
| @ -205,7 +218,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
| 
 | ||||
| @ -215,7 +228,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|       } | ||||
|  | ||||
							
								
								
									
										5
									
								
								bncore.c
									
									
									
									
									
								
							
							
						
						
									
										5
									
								
								bncore.c
									
									
									
									
									
								
							| @ -20,11 +20,12 @@ | ||||
|  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF | ||||
| ------------------------------------------------------------- | ||||
|  Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-) | ||||
|  AMD Athlon64           /GCC v3.4.4   /        74/       124/LTM 0.34 | ||||
|   | ||||
| */ | ||||
| 
 | ||||
| int     KARATSUBA_MUL_CUTOFF = 88,      /* Min. number of digits before Karatsuba multiplication is used. */ | ||||
|         KARATSUBA_SQR_CUTOFF = 128,     /* Min. number of digits before Karatsuba squaring is used. */ | ||||
| int     KARATSUBA_MUL_CUTOFF = 74,      /* Min. number of digits before Karatsuba multiplication is used. */ | ||||
|         KARATSUBA_SQR_CUTOFF = 124,     /* Min. number of digits before Karatsuba squaring is used. */ | ||||
|          | ||||
|         TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */ | ||||
|         TOOM_SQR_CUTOFF      = 400;  | ||||
|  | ||||
							
								
								
									
										5221
									
								
								callgraph.txt
									
									
									
									
									
								
							
							
						
						
									
										5221
									
								
								callgraph.txt
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										12
									
								
								changes.txt
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								changes.txt
									
									
									
									
									
								
							| @ -1,3 +1,15 @@ | ||||
| February 12th, 2005 | ||||
| v0.34  -- Fixed two more small errors in mp_prime_random_ex() | ||||
|        -- Fixed overflow in mp_mul_d() [Kevin Kenny] | ||||
|        -- Added mp_to_(un)signed_bin_n() functions which do bounds checking for ya [and report the size] | ||||
|        -- Added "large" diminished radix support.  Speeds up things like DSA where the moduli is of the form 2^k - P for some P < 2^(k/2) or so | ||||
|           Actually is faster than Montgomery on my AMD64 (and probably much faster on a P4) | ||||
|        -- Updated the manual a bit | ||||
|        -- Ok so I haven't done the textbook work yet... My current freelance gig has landed me in France till the  | ||||
|           end of Feb/05.  Once I get back I'll have tons of free time and I plan to go to town on the book. | ||||
|           As of this release the API will freeze.  At least until the book catches up with all the changes.  I welcome | ||||
|           bug reports but new algorithms will have to wait. | ||||
| 
 | ||||
| December 23rd, 2004 | ||||
| v0.33  -- Fixed "small" variant for mp_div() which would munge with negative dividends... | ||||
|        -- Fixed bug in mp_prime_random_ex() which would set the most significant byte to zero when | ||||
|  | ||||
							
								
								
									
										898
									
								
								demo/demo.c
									
									
									
									
									
								
							
							
						
						
									
										898
									
								
								demo/demo.c
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										382
									
								
								demo/timing.c
									
									
									
									
									
								
							
							
						
						
									
										382
									
								
								demo/timing.c
									
									
									
									
									
								
							| @ -11,15 +11,16 @@ ulong64 _tt; | ||||
| #endif | ||||
| 
 | ||||
| 
 | ||||
| void ndraw(mp_int *a, char *name) | ||||
| void ndraw(mp_int * a, char *name) | ||||
| { | ||||
|    char buf[4096]; | ||||
| 
 | ||||
|    printf("%s: ", name); | ||||
|    mp_toradix(a, buf, 64); | ||||
|    printf("%s\n", buf); | ||||
| } | ||||
| 
 | ||||
| static void draw(mp_int *a) | ||||
| static void draw(mp_int * a) | ||||
| { | ||||
|    ndraw(a, ""); | ||||
| } | ||||
| @ -39,35 +40,38 @@ int lbit(void) | ||||
| } | ||||
| 
 | ||||
| /* RDTSC from Scott Duplichan */ | ||||
| static ulong64 TIMFUNC (void) | ||||
|    { | ||||
|    #if defined __GNUC__ | ||||
|       #if defined(__i386__) || defined(__x86_64__) | ||||
|          unsigned long long a; | ||||
|          __asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx"); | ||||
|          return a; | ||||
|       #else /* gcc-IA64 version */ | ||||
|          unsigned long result; | ||||
|          __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); | ||||
|          while (__builtin_expect ((int) result == -1, 0)) | ||||
|          __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); | ||||
|          return result; | ||||
|       #endif | ||||
| static ulong64 TIMFUNC(void) | ||||
| { | ||||
| #if defined __GNUC__ | ||||
| #if defined(__i386__) || defined(__x86_64__) | ||||
|    unsigned long long a; | ||||
|    __asm__ __volatile__("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n":: | ||||
| 			"m"(a):"%eax", "%edx"); | ||||
|    return a; | ||||
| #else /* gcc-IA64 version */ | ||||
|    unsigned long result; | ||||
|    __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory"); | ||||
| 
 | ||||
|    while (__builtin_expect((int) result == -1, 0)) | ||||
|       __asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory"); | ||||
| 
 | ||||
|    return result; | ||||
| #endif | ||||
| 
 | ||||
|    // Microsoft and Intel Windows compilers
 | ||||
|    #elif defined _M_IX86 | ||||
|      __asm rdtsc | ||||
|    #elif defined _M_AMD64 | ||||
|      return __rdtsc (); | ||||
|    #elif defined _M_IA64 | ||||
|      #if defined __INTEL_COMPILER | ||||
|        #include <ia64intrin.h> | ||||
|      #endif | ||||
|       return __getReg (3116); | ||||
|    #else | ||||
|      #error need rdtsc function for this build | ||||
|    #endif | ||||
|    } | ||||
| #elif defined _M_IX86 | ||||
|    __asm rdtsc | ||||
| #elif defined _M_AMD64 | ||||
|    return __rdtsc(); | ||||
| #elif defined _M_IA64 | ||||
| #if defined __INTEL_COMPILER | ||||
| #include <ia64intrin.h> | ||||
| #endif | ||||
|    return __getReg(3116); | ||||
| #else | ||||
| #error need rdtsc function for this build | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| #define DO(x) x; x; | ||||
| //#define DO4(x) DO2(x); DO2(x);
 | ||||
| @ -77,7 +81,7 @@ static ulong64 TIMFUNC (void) | ||||
| int main(void) | ||||
| { | ||||
|    ulong64 tt, gg, CLK_PER_SEC; | ||||
|    FILE *log, *logb, *logc; | ||||
|    FILE *log, *logb, *logc, *logd; | ||||
|    mp_int a, b, c, d, e, f; | ||||
|    int n, cnt, ix, old_kara_m, old_kara_s; | ||||
|    unsigned rr; | ||||
| @ -90,168 +94,191 @@ int main(void) | ||||
|    mp_init(&f); | ||||
| 
 | ||||
|    srand(time(NULL)); | ||||
|   | ||||
| 
 | ||||
|       /* temp. turn off TOOM */ | ||||
|       TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; | ||||
| 
 | ||||
|       CLK_PER_SEC = TIMFUNC(); | ||||
|       sleep(1); | ||||
|       CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC; | ||||
|    /* temp. turn off TOOM */ | ||||
|    TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000; | ||||
| 
 | ||||
|       printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC); | ||||
|        | ||||
|       log = fopen("logs/add.log", "w"); | ||||
|       for (cnt = 8; cnt <= 128; cnt += 8) { | ||||
|          SLEEP; | ||||
|          mp_rand(&a, cnt); | ||||
|          mp_rand(&b, cnt); | ||||
|          rr = 0; | ||||
|          tt = -1; | ||||
|          do { | ||||
|             gg = TIMFUNC(); | ||||
|             DO(mp_add(&a,&b,&c)); | ||||
|             gg = (TIMFUNC() - gg)>>1; | ||||
|             if (tt > gg) tt = gg; | ||||
|          } while (++rr < 100000); | ||||
|          printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt); | ||||
|          fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log); | ||||
|       } | ||||
|       fclose(log); | ||||
|    CLK_PER_SEC = TIMFUNC(); | ||||
|    sleep(1); | ||||
|    CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC; | ||||
| 
 | ||||
|       log = fopen("logs/sub.log", "w"); | ||||
|       for (cnt = 8; cnt <= 128; cnt += 8) { | ||||
|          SLEEP; | ||||
|          mp_rand(&a, cnt); | ||||
|          mp_rand(&b, cnt); | ||||
|          rr = 0; | ||||
|          tt = -1; | ||||
|          do { | ||||
|             gg = TIMFUNC(); | ||||
|             DO(mp_sub(&a,&b,&c)); | ||||
|             gg = (TIMFUNC() - gg)>>1; | ||||
|             if (tt > gg) tt = gg; | ||||
|          } while (++rr < 100000); | ||||
|    printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC); | ||||
|    goto exptmod; | ||||
|    log = fopen("logs/add.log", "w"); | ||||
|    for (cnt = 8; cnt <= 128; cnt += 8) { | ||||
|       SLEEP; | ||||
|       mp_rand(&a, cnt); | ||||
|       mp_rand(&b, cnt); | ||||
|       rr = 0; | ||||
|       tt = -1; | ||||
|       do { | ||||
| 	 gg = TIMFUNC(); | ||||
| 	 DO(mp_add(&a, &b, &c)); | ||||
| 	 gg = (TIMFUNC() - gg) >> 1; | ||||
| 	 if (tt > gg) | ||||
| 	    tt = gg; | ||||
|       } while (++rr < 100000); | ||||
|       printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", | ||||
| 	     mp_count_bits(&a), CLK_PER_SEC / tt, tt); | ||||
|       fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); | ||||
|       fflush(log); | ||||
|    } | ||||
|    fclose(log); | ||||
| 
 | ||||
|          printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt); | ||||
|          fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt);  fflush(log); | ||||
|       } | ||||
|       fclose(log); | ||||
|    log = fopen("logs/sub.log", "w"); | ||||
|    for (cnt = 8; cnt <= 128; cnt += 8) { | ||||
|       SLEEP; | ||||
|       mp_rand(&a, cnt); | ||||
|       mp_rand(&b, cnt); | ||||
|       rr = 0; | ||||
|       tt = -1; | ||||
|       do { | ||||
| 	 gg = TIMFUNC(); | ||||
| 	 DO(mp_sub(&a, &b, &c)); | ||||
| 	 gg = (TIMFUNC() - gg) >> 1; | ||||
| 	 if (tt > gg) | ||||
| 	    tt = gg; | ||||
|       } while (++rr < 100000); | ||||
| 
 | ||||
|       printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", | ||||
| 	     mp_count_bits(&a), CLK_PER_SEC / tt, tt); | ||||
|       fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); | ||||
|       fflush(log); | ||||
|    } | ||||
|    fclose(log); | ||||
| 
 | ||||
|    /* do mult/square twice, first without karatsuba and second with */ | ||||
|  multtest: | ||||
|    old_kara_m = KARATSUBA_MUL_CUTOFF; | ||||
|    old_kara_s = KARATSUBA_SQR_CUTOFF; | ||||
|    for (ix = 0; ix < 1; ix++) { | ||||
|       printf("With%s Karatsuba\n", (ix==0)?"out":""); | ||||
|    for (ix = 0; ix < 2; ix++) { | ||||
|       printf("With%s Karatsuba\n", (ix == 0) ? "out" : ""); | ||||
| 
 | ||||
|       KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m; | ||||
|       KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s; | ||||
|       KARATSUBA_MUL_CUTOFF = (ix == 0) ? 9999 : old_kara_m; | ||||
|       KARATSUBA_SQR_CUTOFF = (ix == 0) ? 9999 : old_kara_s; | ||||
| 
 | ||||
|       log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w"); | ||||
|       for (cnt = 4; cnt <= 288; cnt += 2) { | ||||
|          SLEEP; | ||||
|          mp_rand(&a, cnt); | ||||
|          mp_rand(&b, cnt); | ||||
|          rr = 0; | ||||
|          tt = -1; | ||||
|          do { | ||||
|             gg = TIMFUNC(); | ||||
|             DO(mp_mul(&a, &b, &c)); | ||||
|             gg = (TIMFUNC() - gg)>>1; | ||||
|             if (tt > gg) tt = gg; | ||||
|          } while (++rr < 100); | ||||
|          printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt); | ||||
|          fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);  fflush(log); | ||||
|       log = fopen((ix == 0) ? "logs/mult.log" : "logs/mult_kara.log", "w"); | ||||
|       for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { | ||||
| 	 SLEEP; | ||||
| 	 mp_rand(&a, cnt); | ||||
| 	 mp_rand(&b, cnt); | ||||
| 	 rr = 0; | ||||
| 	 tt = -1; | ||||
| 	 do { | ||||
| 	    gg = TIMFUNC(); | ||||
| 	    DO(mp_mul(&a, &b, &c)); | ||||
| 	    gg = (TIMFUNC() - gg) >> 1; | ||||
| 	    if (tt > gg) | ||||
| 	       tt = gg; | ||||
| 	 } while (++rr < 100); | ||||
| 	 printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", | ||||
| 		mp_count_bits(&a), CLK_PER_SEC / tt, tt); | ||||
| 	 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); | ||||
| 	 fflush(log); | ||||
|       } | ||||
|       fclose(log); | ||||
| 
 | ||||
|       log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w"); | ||||
|       for (cnt = 4; cnt <= 288; cnt += 2) { | ||||
|          SLEEP; | ||||
|          mp_rand(&a, cnt); | ||||
|          rr = 0; | ||||
|          tt = -1; | ||||
|          do { | ||||
|             gg = TIMFUNC(); | ||||
|             DO(mp_sqr(&a, &b)); | ||||
|             gg = (TIMFUNC() - gg)>>1; | ||||
|             if (tt > gg) tt = gg; | ||||
|          } while (++rr < 100); | ||||
|          printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt); | ||||
|          fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);  fflush(log); | ||||
|       log = fopen((ix == 0) ? "logs/sqr.log" : "logs/sqr_kara.log", "w"); | ||||
|       for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) { | ||||
| 	 SLEEP; | ||||
| 	 mp_rand(&a, cnt); | ||||
| 	 rr = 0; | ||||
| 	 tt = -1; | ||||
| 	 do { | ||||
| 	    gg = TIMFUNC(); | ||||
| 	    DO(mp_sqr(&a, &b)); | ||||
| 	    gg = (TIMFUNC() - gg) >> 1; | ||||
| 	    if (tt > gg) | ||||
| 	       tt = gg; | ||||
| 	 } while (++rr < 100); | ||||
| 	 printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", | ||||
| 		mp_count_bits(&a), CLK_PER_SEC / tt, tt); | ||||
| 	 fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt); | ||||
| 	 fflush(log); | ||||
|       } | ||||
|       fclose(log); | ||||
| 
 | ||||
|    } | ||||
|  exptmod: | ||||
| 
 | ||||
|   { | ||||
|    { | ||||
|       char *primes[] = { | ||||
|          /* 2K moduli mersenne primes */ | ||||
|          "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", | ||||
|          "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", | ||||
|          "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", | ||||
|          "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", | ||||
|          "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", | ||||
|          "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", | ||||
| 	 /* 2K large moduli */ | ||||
| 	 "179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217", | ||||
| 	 "32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169", | ||||
| 	 "1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283", | ||||
| 	 /* 2K moduli mersenne primes */ | ||||
| 	 "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", | ||||
| 	 "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127", | ||||
| 	 "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087", | ||||
| 	 "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007", | ||||
| 	 "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071", | ||||
| 	 "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991", | ||||
| 
 | ||||
|          /* DR moduli */ | ||||
|          "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", | ||||
|          "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", | ||||
|          "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", | ||||
|          "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", | ||||
|          "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", | ||||
|          "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", | ||||
|          "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", | ||||
| 	 /* DR moduli */ | ||||
| 	 "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079", | ||||
| 	 "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039", | ||||
| 	 "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431", | ||||
| 	 "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783", | ||||
| 	 "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147", | ||||
| 	 "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503", | ||||
| 	 "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679", | ||||
| 
 | ||||
|          /* generic unrestricted moduli */ | ||||
|          "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", | ||||
|          "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", | ||||
|          "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", | ||||
|          "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", | ||||
|          "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", | ||||
|          "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", | ||||
|          "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", | ||||
|          NULL | ||||
| 	 /* generic unrestricted moduli */ | ||||
| 	 "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203", | ||||
| 	 "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487", | ||||
| 	 "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", | ||||
| 	 "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887", | ||||
| 	 "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227", | ||||
| 	 "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207", | ||||
| 	 "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", | ||||
| 	 NULL | ||||
|       }; | ||||
|    log = fopen("logs/expt.log", "w"); | ||||
|    logb = fopen("logs/expt_dr.log", "w"); | ||||
|    logc = fopen("logs/expt_2k.log", "w"); | ||||
|    for (n = 0; primes[n]; n++) { | ||||
|       SLEEP; | ||||
|       mp_read_radix(&a, primes[n], 10); | ||||
|       mp_zero(&b); | ||||
|       for (rr = 0; rr < (unsigned)mp_count_bits(&a); rr++) { | ||||
|          mp_mul_2(&b, &b); | ||||
|          b.dp[0] |= lbit(); | ||||
|          b.used  += 1; | ||||
|       log = fopen("logs/expt.log", "w"); | ||||
|       logb = fopen("logs/expt_dr.log", "w"); | ||||
|       logc = fopen("logs/expt_2k.log", "w"); | ||||
|       logd = fopen("logs/expt_2kl.log", "w"); | ||||
|       for (n = 0; primes[n]; n++) { | ||||
| 	 SLEEP; | ||||
| 	 mp_read_radix(&a, primes[n], 10); | ||||
| 	 mp_zero(&b); | ||||
| 	 for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) { | ||||
| 	    mp_mul_2(&b, &b); | ||||
| 	    b.dp[0] |= lbit(); | ||||
| 	    b.used += 1; | ||||
| 	 } | ||||
| 	 mp_sub_d(&a, 1, &c); | ||||
| 	 mp_mod(&b, &c, &b); | ||||
| 	 mp_set(&c, 3); | ||||
| 	 rr = 0; | ||||
| 	 tt = -1; | ||||
| 	 do { | ||||
| 	    gg = TIMFUNC(); | ||||
| 	    DO(mp_exptmod(&c, &b, &a, &d)); | ||||
| 	    gg = (TIMFUNC() - gg) >> 1; | ||||
| 	    if (tt > gg) | ||||
| 	       tt = gg; | ||||
| 	 } while (++rr < 10); | ||||
| 	 mp_sub_d(&a, 1, &e); | ||||
| 	 mp_sub(&e, &b, &b); | ||||
| 	 mp_exptmod(&c, &b, &a, &e);	/* c^(p-1-b) mod a */ | ||||
| 	 mp_mulmod(&e, &d, &a, &d);	/* c^b * c^(p-1-b) == c^p-1 == 1 */ | ||||
| 	 if (mp_cmp_d(&d, 1)) { | ||||
| 	    printf("Different (%d)!!!\n", mp_count_bits(&a)); | ||||
| 	    draw(&d); | ||||
| 	    exit(0); | ||||
| 	 } | ||||
| 	 printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", | ||||
| 		mp_count_bits(&a), CLK_PER_SEC / tt, tt); | ||||
| 	 fprintf(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log, | ||||
| 		 "%d %9llu\n", mp_count_bits(&a), tt); | ||||
|       } | ||||
|       mp_sub_d(&a, 1, &c); | ||||
|       mp_mod(&b, &c, &b); | ||||
|       mp_set(&c, 3); | ||||
|          rr = 0; | ||||
|          tt = -1; | ||||
|          do { | ||||
|             gg = TIMFUNC(); | ||||
|             DO(mp_exptmod(&c, &b, &a, &d)); | ||||
|             gg = (TIMFUNC() - gg)>>1; | ||||
|             if (tt > gg) tt = gg; | ||||
|          } while (++rr < 10); | ||||
|       mp_sub_d(&a, 1, &e); | ||||
|       mp_sub(&e, &b, &b); | ||||
|       mp_exptmod(&c, &b, &a, &e);  /* c^(p-1-b) mod a */ | ||||
|       mp_mulmod(&e, &d, &a, &d);   /* c^b * c^(p-1-b) == c^p-1 == 1 */ | ||||
|       if (mp_cmp_d(&d, 1)) { | ||||
|          printf("Different (%d)!!!\n", mp_count_bits(&a)); | ||||
|          draw(&d); | ||||
|          exit(0); | ||||
|       } | ||||
|       printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt); | ||||
|       fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), tt); | ||||
|    } | ||||
|    } | ||||
|    fclose(log); | ||||
|    fclose(logb); | ||||
|    fclose(logc); | ||||
|    fclose(logd); | ||||
| 
 | ||||
|    log = fopen("logs/invmod.log", "w"); | ||||
|    for (cnt = 4; cnt <= 128; cnt += 4) { | ||||
| @ -260,28 +287,29 @@ int main(void) | ||||
|       mp_rand(&b, cnt); | ||||
| 
 | ||||
|       do { | ||||
|          mp_add_d(&b, 1, &b); | ||||
|          mp_gcd(&a, &b, &c); | ||||
| 	 mp_add_d(&b, 1, &b); | ||||
| 	 mp_gcd(&a, &b, &c); | ||||
|       } while (mp_cmp_d(&c, 1) != MP_EQ); | ||||
| 
 | ||||
|          rr = 0; | ||||
|          tt = -1; | ||||
|       rr = 0; | ||||
|       tt = -1; | ||||
|       do { | ||||
|          gg = TIMFUNC(); | ||||
|          DO(mp_invmod(&b, &a, &c)); | ||||
|          gg = (TIMFUNC() - gg)>>1; | ||||
|          if (tt > gg) tt = gg; | ||||
| 	 gg = TIMFUNC(); | ||||
| 	 DO(mp_invmod(&b, &a, &c)); | ||||
| 	 gg = (TIMFUNC() - gg) >> 1; | ||||
| 	 if (tt > gg) | ||||
| 	    tt = gg; | ||||
|       } while (++rr < 1000); | ||||
|       mp_mulmod(&b, &c, &a, &d); | ||||
|       if (mp_cmp_d(&d, 1) != MP_EQ) { | ||||
|          printf("Failed to invert\n"); | ||||
|          return 0; | ||||
| 	 printf("Failed to invert\n"); | ||||
| 	 return 0; | ||||
|       } | ||||
|       printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt); | ||||
|       fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); | ||||
|       printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", | ||||
| 	     mp_count_bits(&a), CLK_PER_SEC / tt, tt); | ||||
|       fprintf(log, "%d %9llu\n", cnt * DIGIT_BIT, tt); | ||||
|    } | ||||
|    fclose(log); | ||||
| 
 | ||||
|    return 0; | ||||
| } | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										2
									
								
								dep.pl
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								dep.pl
									
									
									
									
									
								
							| @ -13,6 +13,8 @@ print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined | ||||
| foreach my $filename (glob "bn*.c") { | ||||
|    my $define = $filename; | ||||
| 
 | ||||
| print "Processing $filename\n"; | ||||
| 
 | ||||
|    # convert filename to upper case so we can use it as a define  | ||||
|    $define =~ tr/[a-z]/[A-Z]/; | ||||
|    $define =~ tr/\./_/; | ||||
|  | ||||
							
								
								
									
										35
									
								
								etc/tune.c
									
									
									
									
									
								
							
							
						
						
									
										35
									
								
								etc/tune.c
									
									
									
									
									
								
							| @ -10,13 +10,44 @@ | ||||
|  */ | ||||
| #define TIMES (1UL<<14UL) | ||||
| 
 | ||||
| /* RDTSC from Scott Duplichan */ | ||||
| static ulong64 TIMFUNC (void) | ||||
|    { | ||||
|    #if defined __GNUC__ | ||||
|       #if defined(__i386__) || defined(__x86_64__) | ||||
|          unsigned long long a; | ||||
|          __asm__ __volatile__ ("rdtsc\nmovl %%eax,%0\nmovl %%edx,4+%0\n"::"m"(a):"%eax","%edx"); | ||||
|          return a; | ||||
|       #else /* gcc-IA64 version */ | ||||
|          unsigned long result; | ||||
|          __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); | ||||
|          while (__builtin_expect ((int) result == -1, 0)) | ||||
|          __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); | ||||
|          return result; | ||||
|       #endif | ||||
| 
 | ||||
|    // Microsoft and Intel Windows compilers
 | ||||
|    #elif defined _M_IX86 | ||||
|      __asm rdtsc | ||||
|    #elif defined _M_AMD64 | ||||
|      return __rdtsc (); | ||||
|    #elif defined _M_IA64 | ||||
|      #if defined __INTEL_COMPILER | ||||
|        #include <ia64intrin.h> | ||||
|      #endif | ||||
|       return __getReg (3116); | ||||
|    #else | ||||
|      #error need rdtsc function for this build | ||||
|    #endif | ||||
|    } | ||||
| 
 | ||||
| 
 | ||||
| #ifndef X86_TIMER | ||||
| 
 | ||||
| /* generic ISO C timer */ | ||||
| ulong64 LBL_T; | ||||
| void t_start(void) { LBL_T = clock(); } | ||||
| ulong64 t_read(void) { return clock() - LBL_T; } | ||||
| void t_start(void) { LBL_T = TIMFUNC(); } | ||||
| ulong64 t_read(void) { return TIMFUNC() - LBL_T; } | ||||
| 
 | ||||
| #else | ||||
| extern void t_start(void); | ||||
|  | ||||
							
								
								
									
										14
									
								
								logs/add.log
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								logs/add.log
									
									
									
									
									
								
							| @ -1,10 +1,10 @@ | ||||
| 480        88 | ||||
| 960       113 | ||||
| 1440       138 | ||||
| 1920       163 | ||||
| 2400       202 | ||||
| 2880       226 | ||||
| 3360       251 | ||||
| 480        87 | ||||
| 960       111 | ||||
| 1440       135 | ||||
| 1920       159 | ||||
| 2400       200 | ||||
| 2880       224 | ||||
| 3360       248 | ||||
| 3840       272 | ||||
| 4320       296 | ||||
| 4800       320 | ||||
|  | ||||
| @ -1,7 +1,7 @@ | ||||
| 513   1499509 | ||||
| 769   3682671 | ||||
| 1025   8098887 | ||||
| 2049  49332743 | ||||
| 2561  89647783 | ||||
| 3073 149440713 | ||||
| 4097 326135364 | ||||
| 513   1489160 | ||||
| 769   3688476 | ||||
| 1025   8162061 | ||||
| 2049  49260015 | ||||
| 2561  89579052 | ||||
| 3073 148797060 | ||||
| 4097 324449263 | ||||
|  | ||||
| @ -1,6 +1,5 @@ | ||||
| 521   1423346 | ||||
| 607   1841305 | ||||
| 1279   8375656 | ||||
| 2203  34104708 | ||||
| 3217  83830729 | ||||
| 4253 167916804 | ||||
| 607   2272809 | ||||
| 1279   9557382 | ||||
| 2203  36250309 | ||||
| 3217  87666486 | ||||
| 4253 174168369 | ||||
|  | ||||
							
								
								
									
										4
									
								
								logs/expt_2kl.log
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								logs/expt_2kl.log
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,4 @@ | ||||
| 1024   6954080 | ||||
| 2048  35993987 | ||||
| 4096 176068521 | ||||
| 521   1683720 | ||||
| @ -1,7 +1,7 @@ | ||||
| 532   1803110 | ||||
| 784   3607375 | ||||
| 1036   6089790 | ||||
| 1540  14739797 | ||||
| 2072  33251589 | ||||
| 3080  82794331 | ||||
| 4116 165212734 | ||||
| 532   1989592 | ||||
| 784   3898697 | ||||
| 1036   6519700 | ||||
| 1540  15676650 | ||||
| 2072  33128187 | ||||
| 3080  82963362 | ||||
| 4116 168358337 | ||||
|  | ||||
							
								
								
									
										227
									
								
								logs/mult.log
									
									
									
									
									
								
							
							
						
						
									
										227
									
								
								logs/mult.log
									
									
									
									
									
								
							| @ -1,143 +1,84 @@ | ||||
| 271       580 | ||||
| 390       861 | ||||
| 511      1177 | ||||
| 630      1598 | ||||
| 749      2115 | ||||
| 871      2670 | ||||
| 991      3276 | ||||
| 1111      3987 | ||||
| 1231      4722 | ||||
| 1351      5474 | ||||
| 1471      6281 | ||||
| 1589      7126 | ||||
| 1710      8114 | ||||
| 1831      8988 | ||||
| 1946     10038 | ||||
| 2071     10995 | ||||
| 2188     12286 | ||||
| 2310     13152 | ||||
| 2430     14480 | ||||
| 2549     15521 | ||||
| 2671     17171 | ||||
| 2790     18081 | ||||
| 2911     19754 | ||||
| 3031     20809 | ||||
| 3150     22849 | ||||
| 3269     23757 | ||||
| 3391     25772 | ||||
| 3508     26832 | ||||
| 3631     29304 | ||||
| 3750     30149 | ||||
| 3865     32581 | ||||
| 3988     33644 | ||||
| 4111     36565 | ||||
| 4231     37309 | ||||
| 4351     40152 | ||||
| 4471     41188 | ||||
| 4590     44658 | ||||
| 4710     45256 | ||||
| 4827     48538 | ||||
| 4951     49490 | ||||
| 5070     53472 | ||||
| 5190     53902 | ||||
| 5308     57619 | ||||
| 5431     58509 | ||||
| 5550     63044 | ||||
| 5664     63333 | ||||
| 5791     67542 | ||||
| 5911     68279 | ||||
| 6028     73477 | ||||
| 6150     73475 | ||||
| 6271     78189 | ||||
| 6390     78842 | ||||
| 6510     84691 | ||||
| 6631     84444 | ||||
| 6751     89721 | ||||
| 6871     90186 | ||||
| 6991     96665 | ||||
| 7111     96119 | ||||
| 7231    101937 | ||||
| 7350    102212 | ||||
| 7471    109439 | ||||
| 7591    108491 | ||||
| 7709    114965 | ||||
| 7829    115025 | ||||
| 7951    123002 | ||||
| 8071    121630 | ||||
| 8190    128725 | ||||
| 8311    128536 | ||||
| 8430    137298 | ||||
| 8550    135568 | ||||
| 8671    143265 | ||||
| 8791    142793 | ||||
| 8911    152432 | ||||
| 9030    150202 | ||||
| 9151    158616 | ||||
| 9271    157848 | ||||
| 9391    168374 | ||||
| 9511    165651 | ||||
| 9627    174775 | ||||
| 9750    173375 | ||||
| 9871    185067 | ||||
| 9985    181845 | ||||
| 10111    191708 | ||||
| 10229    190239 | ||||
| 10351    202585 | ||||
| 10467    198704 | ||||
| 10591    209193 | ||||
| 10711    207322 | ||||
| 10831    220842 | ||||
| 10950    215882 | ||||
| 11071    227761 | ||||
| 11191    225501 | ||||
| 11311    239669 | ||||
| 11430    234809 | ||||
| 11550    243511 | ||||
| 11671    255947 | ||||
| 11791    255243 | ||||
| 11906    267828 | ||||
| 12029    263437 | ||||
| 12149    276571 | ||||
| 12270    275579 | ||||
| 12390    288963 | ||||
| 12510    284001 | ||||
| 12631    298196 | ||||
| 12751    297018 | ||||
| 12869    310848 | ||||
| 12990    305369 | ||||
| 13111    319086 | ||||
| 13230    318940 | ||||
| 13349    333685 | ||||
| 13471    327495 | ||||
| 13588    343678 | ||||
| 13711    341817 | ||||
| 13831    357181 | ||||
| 13948    350440 | ||||
| 14071    367526 | ||||
| 14189    365330 | ||||
| 14311    381551 | ||||
| 14429    374149 | ||||
| 14549    392203 | ||||
| 14670    389764 | ||||
| 14791    406761 | ||||
| 14910    398652 | ||||
| 15026    417718 | ||||
| 15150    414733 | ||||
| 15269    432759 | ||||
| 15390   1037071 | ||||
| 15511   1053454 | ||||
| 15631   1069198 | ||||
| 15748   1086164 | ||||
| 15871   1112820 | ||||
| 15991   1129676 | ||||
| 16111   1145924 | ||||
| 16230   1163016 | ||||
| 16345   1179911 | ||||
| 16471   1197048 | ||||
| 16586   1214352 | ||||
| 16711   1232095 | ||||
| 16829   1249338 | ||||
| 16947   1266987 | ||||
| 17071   1284181 | ||||
| 17188   1302521 | ||||
| 17311   1320539 | ||||
| 271       555 | ||||
| 390       855 | ||||
| 508      1161 | ||||
| 631      1605 | ||||
| 749      2117 | ||||
| 871      2687 | ||||
| 991      3329 | ||||
| 1108      4084 | ||||
| 1231      4786 | ||||
| 1351      5624 | ||||
| 1470      6392 | ||||
| 1586      7364 | ||||
| 1710      8218 | ||||
| 1830      9255 | ||||
| 1951     10217 | ||||
| 2067     11461 | ||||
| 2191     12463 | ||||
| 2308     13677 | ||||
| 2430     14800 | ||||
| 2551     16232 | ||||
| 2671     17460 | ||||
| 2791     18899 | ||||
| 2902     20247 | ||||
| 3028     21902 | ||||
| 3151     23240 | ||||
| 3267     24927 | ||||
| 3391     26441 | ||||
| 3511     28277 | ||||
| 3631     29838 | ||||
| 3749     31751 | ||||
| 3869     33673 | ||||
| 3989     35431 | ||||
| 4111     37518 | ||||
| 4231     39426 | ||||
| 4349     41504 | ||||
| 4471     43567 | ||||
| 4591     45786 | ||||
| 4711     47876 | ||||
| 4831     50299 | ||||
| 4951     52427 | ||||
| 5071     54785 | ||||
| 5189     57241 | ||||
| 5307     59730 | ||||
| 5431     62194 | ||||
| 5551     64761 | ||||
| 5670     67322 | ||||
| 5789     70073 | ||||
| 5907     72663 | ||||
| 6030     75437 | ||||
| 6151     78242 | ||||
| 6268     81202 | ||||
| 6389     83948 | ||||
| 6509     86985 | ||||
| 6631     89903 | ||||
| 6747     93184 | ||||
| 6869     96044 | ||||
| 6991     99286 | ||||
| 7109    102395 | ||||
| 7229    105917 | ||||
| 7351    108940 | ||||
| 7470    112490 | ||||
| 7589    115702 | ||||
| 7711    119508 | ||||
| 7831    122632 | ||||
| 7951    126410 | ||||
| 8071    129808 | ||||
| 8190    133895 | ||||
| 8311    137146 | ||||
| 8431    141218 | ||||
| 8549    144732 | ||||
| 8667    149131 | ||||
| 8790    152462 | ||||
| 8911    156754 | ||||
| 9030    160479 | ||||
| 9149    165138 | ||||
| 9271    168601 | ||||
| 9391    173185 | ||||
| 9511    176988 | ||||
| 9627    181976 | ||||
| 9751    185539 | ||||
| 9870    190388 | ||||
| 9991    194335 | ||||
| 10110    199605 | ||||
| 10228    203298 | ||||
|  | ||||
| @ -1,33 +1,84 @@ | ||||
| 924     16686 | ||||
| 1146     25334 | ||||
| 1371     35304 | ||||
| 1591     47122 | ||||
| 1820     61500 | ||||
| 2044     75254 | ||||
| 2266     91732 | ||||
| 2492    111656 | ||||
| 2716    129428 | ||||
| 2937    147508 | ||||
| 3164    167758 | ||||
| 3388    188248 | ||||
| 3612    210826 | ||||
| 3836    233814 | ||||
| 4059    256898 | ||||
| 4284    280210 | ||||
| 4508    310372 | ||||
| 4731    333902 | ||||
| 4955    376502 | ||||
| 5179    402854 | ||||
| 5404    432004 | ||||
| 5626    459010 | ||||
| 5849    491868 | ||||
| 6076    520550 | ||||
| 6300    547400 | ||||
| 6524    575968 | ||||
| 6747    608482 | ||||
| 6971    642850 | ||||
| 7196    673670 | ||||
| 7419    710680 | ||||
| 7644    743942 | ||||
| 7868    780394 | ||||
| 8092    817342 | ||||
| 271       560 | ||||
| 391       870 | ||||
| 511      1159 | ||||
| 631      1605 | ||||
| 750      2111 | ||||
| 871      2737 | ||||
| 991      3361 | ||||
| 1111      4054 | ||||
| 1231      4778 | ||||
| 1351      5600 | ||||
| 1471      6404 | ||||
| 1591      7323 | ||||
| 1710      8255 | ||||
| 1831      9239 | ||||
| 1948     10257 | ||||
| 2070     11397 | ||||
| 2190     12531 | ||||
| 2308     13665 | ||||
| 2429     14870 | ||||
| 2550     16175 | ||||
| 2671     17539 | ||||
| 2787     18879 | ||||
| 2911     20350 | ||||
| 3031     21807 | ||||
| 3150     23415 | ||||
| 3270     24897 | ||||
| 3388     26567 | ||||
| 3511     28205 | ||||
| 3627     30076 | ||||
| 3751     31744 | ||||
| 3869     33657 | ||||
| 3991     35425 | ||||
| 4111     37522 | ||||
| 4229     39363 | ||||
| 4351     41503 | ||||
| 4470     43491 | ||||
| 4590     45827 | ||||
| 4711     47795 | ||||
| 4828     50166 | ||||
| 4951     52318 | ||||
| 5070     54911 | ||||
| 5191     57036 | ||||
| 5308     58237 | ||||
| 5431     60248 | ||||
| 5551     62678 | ||||
| 5671     64786 | ||||
| 5791     67294 | ||||
| 5908     69343 | ||||
| 6031     71607 | ||||
| 6151     74166 | ||||
| 6271     76590 | ||||
| 6391     78734 | ||||
| 6511     81175 | ||||
| 6631     83742 | ||||
| 6750     86403 | ||||
| 6868     88873 | ||||
| 6990     91150 | ||||
| 7110     94211 | ||||
| 7228     96922 | ||||
| 7351     99445 | ||||
| 7469    102216 | ||||
| 7589    104968 | ||||
| 7711    108113 | ||||
| 7827    110758 | ||||
| 7950    113714 | ||||
| 8071    116511 | ||||
| 8186    119643 | ||||
| 8310    122679 | ||||
| 8425    125581 | ||||
| 8551    128715 | ||||
| 8669    131778 | ||||
| 8788    135116 | ||||
| 8910    138138 | ||||
| 9031    141628 | ||||
| 9148    144754 | ||||
| 9268    148367 | ||||
| 9391    151551 | ||||
| 9511    155033 | ||||
| 9631    158652 | ||||
| 9751    162125 | ||||
| 9871    165248 | ||||
| 9988    168627 | ||||
| 10111    172427 | ||||
| 10231    176412 | ||||
|  | ||||
							
								
								
									
										227
									
								
								logs/sqr.log
									
									
									
									
									
								
							
							
						
						
									
										227
									
								
								logs/sqr.log
									
									
									
									
									
								
							| @ -1,143 +1,84 @@ | ||||
| 271       552 | ||||
| 389       883 | ||||
| 510      1191 | ||||
| 629      1572 | ||||
| 750      1996 | ||||
| 863      2428 | ||||
| 991      2891 | ||||
| 1108      3539 | ||||
| 1231      4182 | ||||
| 1351      4980 | ||||
| 1471      5771 | ||||
| 1590      6551 | ||||
| 1711      7313 | ||||
| 1830      8240 | ||||
| 1951      9184 | ||||
| 2070     10087 | ||||
| 2191     11140 | ||||
| 2311     12111 | ||||
| 2431     13219 | ||||
| 2550     14247 | ||||
| 2669     15353 | ||||
| 2791     16446 | ||||
| 2911     17692 | ||||
| 3029     18848 | ||||
| 3151     20028 | ||||
| 3268     21282 | ||||
| 3391     22696 | ||||
| 3511     23971 | ||||
| 3631     25303 | ||||
| 3751     26675 | ||||
| 3871     28245 | ||||
| 3990     29736 | ||||
| 4111     31124 | ||||
| 4229     32714 | ||||
| 4347     34397 | ||||
| 4471     35877 | ||||
| 4587     37269 | ||||
| 4710     39011 | ||||
| 4831     40884 | ||||
| 4950     42501 | ||||
| 5070     44005 | ||||
| 5191     46026 | ||||
| 5310     48168 | ||||
| 5431     49801 | ||||
| 5551     51385 | ||||
| 5671     53604 | ||||
| 5787     55942 | ||||
| 5910     57757 | ||||
| 6031     59391 | ||||
| 6151     61754 | ||||
| 6271     64234 | ||||
| 6390     66110 | ||||
| 6511     67845 | ||||
| 6627     70474 | ||||
| 6751     73113 | ||||
| 6871     75064 | ||||
| 6990     76940 | ||||
| 7111     79681 | ||||
| 7230     82548 | ||||
| 7351     84597 | ||||
| 7471     86507 | ||||
| 7591     89497 | ||||
| 7711    225216 | ||||
| 7831    232192 | ||||
| 7951    239583 | ||||
| 8071    247302 | ||||
| 8191    255497 | ||||
| 8308    261587 | ||||
| 8431    271490 | ||||
| 8550    279492 | ||||
| 8671    286927 | ||||
| 8790    294680 | ||||
| 8910    302974 | ||||
| 9030    311300 | ||||
| 9150    318635 | ||||
| 9271    326740 | ||||
| 9390    335304 | ||||
| 9511    344297 | ||||
| 9630    352056 | ||||
| 9748    358652 | ||||
| 9870    369723 | ||||
| 9991    379119 | ||||
| 10111    386982 | ||||
| 10231    396075 | ||||
| 10349    404396 | ||||
| 10470    415375 | ||||
| 10590    424146 | ||||
| 10711    433390 | ||||
| 10829    442662 | ||||
| 10950    453238 | ||||
| 11071    462178 | ||||
| 11186    469811 | ||||
| 11311    482529 | ||||
| 11431    493214 | ||||
| 11550    503210 | ||||
| 11671    513486 | ||||
| 11791    524244 | ||||
| 11911    535277 | ||||
| 12031    544872 | ||||
| 12151    555695 | ||||
| 12271    566893 | ||||
| 12391    578385 | ||||
| 12510    588658 | ||||
| 12628    596914 | ||||
| 12751    611324 | ||||
| 12871    623437 | ||||
| 12991    633907 | ||||
| 13110    645605 | ||||
| 13231    657684 | ||||
| 13351    670037 | ||||
| 13471    680939 | ||||
| 13591    693047 | ||||
| 13710    705363 | ||||
| 13829    718178 | ||||
| 13949    727930 | ||||
| 14069    739641 | ||||
| 14190    754817 | ||||
| 14310    768192 | ||||
| 14431    779875 | ||||
| 14551    792655 | ||||
| 14667    802847 | ||||
| 14791    819806 | ||||
| 14911    831684 | ||||
| 15031    844936 | ||||
| 15151    858813 | ||||
| 15270    873037 | ||||
| 15387    882123 | ||||
| 15510    899117 | ||||
| 15631    913465 | ||||
| 15750    927989 | ||||
| 15870    940790 | ||||
| 15991    954948 | ||||
| 16110    969483 | ||||
| 16231    984544 | ||||
| 16350    997837 | ||||
| 16470   1012445 | ||||
| 16590   1027834 | ||||
| 16710   1043032 | ||||
| 16831   1056394 | ||||
| 16951   1071408 | ||||
| 17069   1097263 | ||||
| 17191   1113364 | ||||
| 17306   1123650 | ||||
| 265       562 | ||||
| 389       882 | ||||
| 509      1207 | ||||
| 631      1572 | ||||
| 750      1990 | ||||
| 859      2433 | ||||
| 991      2894 | ||||
| 1109      3555 | ||||
| 1230      4228 | ||||
| 1350      5018 | ||||
| 1471      5805 | ||||
| 1591      6579 | ||||
| 1709      7415 | ||||
| 1829      8329 | ||||
| 1949      9225 | ||||
| 2071     10139 | ||||
| 2188     11239 | ||||
| 2309     12178 | ||||
| 2431     13212 | ||||
| 2551     14294 | ||||
| 2671     15551 | ||||
| 2791     16512 | ||||
| 2911     17718 | ||||
| 3030     18876 | ||||
| 3150     20259 | ||||
| 3270     21374 | ||||
| 3391     22650 | ||||
| 3511     23948 | ||||
| 3631     25493 | ||||
| 3750     26756 | ||||
| 3870     28225 | ||||
| 3989     29705 | ||||
| 4110     31409 | ||||
| 4230     32834 | ||||
| 4351     34327 | ||||
| 4471     35818 | ||||
| 4591     37636 | ||||
| 4711     39228 | ||||
| 4830     40868 | ||||
| 4949     42393 | ||||
| 5070     44541 | ||||
| 5191     46269 | ||||
| 5310     48162 | ||||
| 5429     49728 | ||||
| 5548     51985 | ||||
| 5671     53948 | ||||
| 5791     55885 | ||||
| 5910     57584 | ||||
| 6031     60082 | ||||
| 6150     62239 | ||||
| 6270     64309 | ||||
| 6390     66014 | ||||
| 6511     68766 | ||||
| 6631     71012 | ||||
| 6750     73172 | ||||
| 6871     74952 | ||||
| 6991     77909 | ||||
| 7111     80371 | ||||
| 7231     82666 | ||||
| 7351     84531 | ||||
| 7469     87698 | ||||
| 7589     90318 | ||||
| 7711    225384 | ||||
| 7830    232428 | ||||
| 7950    240009 | ||||
| 8070    246522 | ||||
| 8190    253662 | ||||
| 8310    260961 | ||||
| 8431    269253 | ||||
| 8549    275743 | ||||
| 8671    283769 | ||||
| 8789    290811 | ||||
| 8911    300034 | ||||
| 9030    306873 | ||||
| 9149    315085 | ||||
| 9270    323944 | ||||
| 9390    332390 | ||||
| 9508    337519 | ||||
| 9631    348986 | ||||
| 9749    356904 | ||||
| 9871    367013 | ||||
| 9989    373831 | ||||
| 10108    381033 | ||||
| 10230    393475 | ||||
|  | ||||
| @ -1,33 +1,84 @@ | ||||
| 922     11272 | ||||
| 1148     16004 | ||||
| 1370     21958 | ||||
| 1596     28684 | ||||
| 1817     37832 | ||||
| 2044     46386 | ||||
| 2262     56218 | ||||
| 2492     66388 | ||||
| 2716     77478 | ||||
| 2940     89380 | ||||
| 3163    103680 | ||||
| 3385    116274 | ||||
| 3612    135334 | ||||
| 3836    151332 | ||||
| 4057    164938 | ||||
| 4284    183178 | ||||
| 4508    198864 | ||||
| 4731    215222 | ||||
| 4954    231986 | ||||
| 5180    251660 | ||||
| 5404    269414 | ||||
| 5626    288454 | ||||
| 5850    307806 | ||||
| 6076    329458 | ||||
| 6299    347726 | ||||
| 6523    369864 | ||||
| 6748    387832 | ||||
| 6971    413010 | ||||
| 7194    453310 | ||||
| 7415    476936 | ||||
| 7643    497118 | ||||
| 7867    521394 | ||||
| 8091    540224 | ||||
| 271       560 | ||||
| 388       878 | ||||
| 511      1179 | ||||
| 629      1625 | ||||
| 751      1988 | ||||
| 871      2423 | ||||
| 989      2896 | ||||
| 1111      3561 | ||||
| 1231      4209 | ||||
| 1350      5015 | ||||
| 1470      5804 | ||||
| 1591      6556 | ||||
| 1709      7420 | ||||
| 1831      8263 | ||||
| 1951      9173 | ||||
| 2070     10153 | ||||
| 2191     11229 | ||||
| 2310     12167 | ||||
| 2431     13211 | ||||
| 2550     14309 | ||||
| 2671     15524 | ||||
| 2788     16525 | ||||
| 2910     17712 | ||||
| 3028     18822 | ||||
| 3148     20220 | ||||
| 3271     21343 | ||||
| 3391     22652 | ||||
| 3511     23944 | ||||
| 3630     25485 | ||||
| 3750     26778 | ||||
| 3868     28201 | ||||
| 3990     29653 | ||||
| 4111     31393 | ||||
| 4225     32841 | ||||
| 4350     34328 | ||||
| 4471     35786 | ||||
| 4590     37652 | ||||
| 4711     39245 | ||||
| 4830     40876 | ||||
| 4951     42433 | ||||
| 5068     44547 | ||||
| 5191     46321 | ||||
| 5311     48140 | ||||
| 5430     49727 | ||||
| 5550     52034 | ||||
| 5671     53954 | ||||
| 5791     55921 | ||||
| 5908     57597 | ||||
| 6031     60084 | ||||
| 6148     62226 | ||||
| 6270     64295 | ||||
| 6390     66045 | ||||
| 6511     68779 | ||||
| 6629     71003 | ||||
| 6751     73169 | ||||
| 6871     74992 | ||||
| 6991     77895 | ||||
| 7110     80376 | ||||
| 7231     82628 | ||||
| 7351     84468 | ||||
| 7470     87664 | ||||
| 7591     90284 | ||||
| 7711     91352 | ||||
| 7828     93995 | ||||
| 7950     96276 | ||||
| 8071     98691 | ||||
| 8190    101256 | ||||
| 8308    103631 | ||||
| 8431    105222 | ||||
| 8550    108343 | ||||
| 8671    110281 | ||||
| 8787    112764 | ||||
| 8911    115397 | ||||
| 9031    117690 | ||||
| 9151    120266 | ||||
| 9271    122715 | ||||
| 9391    124624 | ||||
| 9510    127937 | ||||
| 9630    130313 | ||||
| 9750    132914 | ||||
| 9871    136129 | ||||
| 9991    138517 | ||||
| 10108    141525 | ||||
| 10231    144225 | ||||
|  | ||||
							
								
								
									
										30
									
								
								logs/sub.log
									
									
									
									
									
								
							
							
						
						
									
										30
									
								
								logs/sub.log
									
									
									
									
									
								
							| @ -1,16 +1,16 @@ | ||||
| 480        87 | ||||
| 960       114 | ||||
| 1440       139 | ||||
| 1920       159 | ||||
| 2400       204 | ||||
| 2880       228 | ||||
| 3360       250 | ||||
| 3840       273 | ||||
| 4320       300 | ||||
| 480        94 | ||||
| 960       116 | ||||
| 1440       140 | ||||
| 1920       164 | ||||
| 2400       205 | ||||
| 2880       229 | ||||
| 3360       253 | ||||
| 3840       277 | ||||
| 4320       299 | ||||
| 4800       321 | ||||
| 5280       348 | ||||
| 5760       370 | ||||
| 6240       393 | ||||
| 6720       420 | ||||
| 7200       444 | ||||
| 7680       466 | ||||
| 5280       345 | ||||
| 5760       371 | ||||
| 6240       395 | ||||
| 6720       419 | ||||
| 7200       441 | ||||
| 7680       465 | ||||
|  | ||||
							
								
								
									
										6
									
								
								makefile
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								makefile
									
									
									
									
									
								
							| @ -3,7 +3,7 @@ | ||||
| #Tom St Denis
 | ||||
| 
 | ||||
| #version of library 
 | ||||
| VERSION=0.33 | ||||
| VERSION=0.34 | ||||
| 
 | ||||
| CFLAGS  +=  -I./ -Wall -W -Wshadow -Wsign-compare | ||||
| 
 | ||||
| @ -57,11 +57,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ | ||||
| bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ | ||||
| bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ | ||||
| bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ | ||||
| bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ | ||||
| bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ | ||||
| bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ | ||||
| bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ | ||||
| bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ | ||||
| bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o | ||||
| 
 | ||||
| libtommath.a:  $(OBJECTS) | ||||
| 	$(AR) $(ARFLAGS) libtommath.a $(OBJECTS) | ||||
|  | ||||
| @ -27,11 +27,13 @@ bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \ | ||||
| bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \ | ||||
| bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \ | ||||
| bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \ | ||||
| bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \ | ||||
| bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \ | ||||
| bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \ | ||||
| bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \ | ||||
| bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \ | ||||
| bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj | ||||
| bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \ | ||||
| bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj | ||||
| 
 | ||||
| TARGET = libtommath.lib | ||||
| 
 | ||||
|  | ||||
| @ -32,11 +32,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ | ||||
| bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ | ||||
| bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ | ||||
| bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ | ||||
| bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ | ||||
| bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ | ||||
| bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ | ||||
| bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ | ||||
| bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ | ||||
| bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o | ||||
| 
 | ||||
| # make a Windows DLL via Cygwin | ||||
| windll:  $(OBJECTS) | ||||
|  | ||||
| @ -59,11 +59,13 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ | ||||
| bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ | ||||
| bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ | ||||
| bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ | ||||
| bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ | ||||
| bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ | ||||
| bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ | ||||
| bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ | ||||
| bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ | ||||
| bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o | ||||
| 
 | ||||
| libtommath.a:  $(OBJECTS) | ||||
| 	$(AR) $(ARFLAGS) libtommath.a $(OBJECTS) | ||||
|  | ||||
| @ -26,11 +26,13 @@ bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj \ | ||||
| bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \ | ||||
| bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \ | ||||
| bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \ | ||||
| bn_mp_reduce_2k_l.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_2k_setup_l.obj \ | ||||
| bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \ | ||||
| bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \ | ||||
| bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \ | ||||
| bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \ | ||||
| bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj | ||||
| bn_mp_init_set.obj bn_mp_init_set_int.obj bn_mp_invmod_slow.obj bn_mp_prime_rabin_miller_trials.obj \ | ||||
| bn_mp_to_signed_bin_n.obj bn_mp_to_unsigned_bin_n.obj | ||||
| 
 | ||||
| library: $(OBJECTS) | ||||
| 	lib /out:tommath.lib $(OBJECTS) | ||||
|  | ||||
| @ -1,7 +1,7 @@ | ||||
| #Makefile for GCC | ||||
| # | ||||
| #Tom St Denis | ||||
| VERSION=0:33 | ||||
| VERSION=0:34 | ||||
| 
 | ||||
| CC = libtool --mode=compile gcc | ||||
| CFLAGS  +=  -I./ -Wall -W -Wshadow -Wsign-compare | ||||
| @ -53,11 +53,14 @@ bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \ | ||||
| bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \ | ||||
| bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \ | ||||
| bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \ | ||||
| bn_mp_reduce_2k_l.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_2k_setup_l.o \ | ||||
| bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \ | ||||
| bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \ | ||||
| bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_exteuclid.o bn_mp_toradix_n.o \ | ||||
| bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \ | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o | ||||
| bn_mp_init_set_int.o bn_mp_invmod_slow.o bn_mp_prime_rabin_miller_trials.o \ | ||||
| bn_mp_to_signed_bin_n.o bn_mp_to_unsigned_bin_n.o | ||||
| 
 | ||||
| 
 | ||||
| libtommath.la:  $(OBJECTS) | ||||
| 	libtool --mode=link gcc *.lo -o libtommath.la -rpath $(LIBPATH) -version-info $(VERSION) | ||||
|  | ||||
							
								
								
									
										
											BIN
										
									
								
								poster.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								poster.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										322
									
								
								pre_gen/mpi.c
									
									
									
									
									
								
							
							
						
						
									
										322
									
								
								pre_gen/mpi.c
									
									
									
									
									
								
							| @ -69,8 +69,7 @@ char *mp_error_to_string(int code) | ||||
|  * Based on slow invmod except this is optimized for the case where b is  | ||||
|  * odd as per HAC Note 14.64 on pp. 610 | ||||
|  */ | ||||
| int | ||||
| fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) | ||||
| int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) | ||||
| { | ||||
|   mp_int  x, y, u, v, B, D; | ||||
|   int     res, neg; | ||||
| @ -220,8 +219,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); | ||||
|  * | ||||
|  * Based on Algorithm 14.32 on pp.601 of HAC. | ||||
| */ | ||||
| int | ||||
| fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | ||||
| int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | ||||
| { | ||||
|   int     ix, res, olduse; | ||||
|   mp_word W[MP_WARRAY]; | ||||
| @ -401,8 +399,7 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | ||||
|  * Based on Algorithm 14.12 on pp.595 of HAC. | ||||
|  * | ||||
|  */ | ||||
| int | ||||
| fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| { | ||||
|   int     olduse, res, pa, ix, iz; | ||||
|   mp_digit W[MP_WARRAY]; | ||||
| @ -451,7 +448,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
|   } | ||||
| 
 | ||||
|   /* store final carry */ | ||||
|   W[ix] = _W; | ||||
|   W[ix] = _W & MP_MASK; | ||||
| 
 | ||||
|   /* setup dest */ | ||||
|   olduse  = c->used; | ||||
| @ -504,8 +501,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
|  * | ||||
|  * Based on Algorithm 14.12 on pp.595 of HAC. | ||||
|  */ | ||||
| int | ||||
| fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
| { | ||||
|   int     olduse, res, pa, ix, iz; | ||||
|   mp_digit W[MP_WARRAY]; | ||||
| @ -552,7 +548,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||||
|   } | ||||
|    | ||||
|   /* store final carry */ | ||||
|   W[ix] = _W; | ||||
|   W[ix] = _W & MP_MASK; | ||||
| 
 | ||||
|   /* setup dest */ | ||||
|   olduse  = c->used; | ||||
| @ -683,7 +679,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b) | ||||
|       } | ||||
| 
 | ||||
|       /* store it */ | ||||
|       W[ix] = _W; | ||||
|       W[ix] = _W & MP_MASK; | ||||
| 
 | ||||
|       /* make next carry */ | ||||
|       W1 = _W >> ((mp_word)DIGIT_BIT); | ||||
| @ -2467,21 +2463,29 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
| #endif | ||||
|   } | ||||
| 
 | ||||
| /* modified diminished radix reduction */ | ||||
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) | ||||
|   if (mp_reduce_is_2k_l(P) == MP_YES) { | ||||
|      return s_mp_exptmod(G, X, P, Y, 1); | ||||
|   } | ||||
| #endif | ||||
| 
 | ||||
| #ifdef BN_MP_DR_IS_MODULUS_C | ||||
|   /* is it a DR modulus? */ | ||||
|   dr = mp_dr_is_modulus(P); | ||||
| #else | ||||
|   /* default to no */ | ||||
|   dr = 0; | ||||
| #endif | ||||
| 
 | ||||
| #ifdef BN_MP_REDUCE_IS_2K_C | ||||
|   /* if not, is it a uDR modulus? */ | ||||
|   /* if not, is it a unrestricted DR modulus? */ | ||||
|   if (dr == 0) { | ||||
|      dr = mp_reduce_is_2k(P) << 1; | ||||
|   } | ||||
| #endif | ||||
|      | ||||
|   /* if the modulus is odd or dr != 0 use the fast method */ | ||||
|   /* if the modulus is odd or dr != 0 use the montgomery method */ | ||||
| #ifdef BN_MP_EXPTMOD_FAST_C | ||||
|   if (mp_isodd (P) == 1 || dr !=  0) { | ||||
|     return mp_exptmod_fast (G, X, P, Y, dr); | ||||
| @ -2489,7 +2493,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
| #endif | ||||
| #ifdef BN_S_MP_EXPTMOD_C | ||||
|     /* otherwise use the generic Barrett reduction technique */ | ||||
|     return s_mp_exptmod (G, X, P, Y); | ||||
|     return s_mp_exptmod (G, X, P, Y, 0); | ||||
| #else | ||||
|     /* no exptmod for evens */ | ||||
|     return MP_VAL; | ||||
| @ -2535,8 +2539,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|    #define TAB_SIZE 256 | ||||
| #endif | ||||
| 
 | ||||
| int | ||||
| mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||||
| int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||||
| { | ||||
|   mp_int  M[TAB_SIZE], res; | ||||
|   mp_digit buf, mp; | ||||
| @ -4989,8 +4992,9 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c) | ||||
|     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | ||||
|   } | ||||
| 
 | ||||
|   /* store final carry [if any] */ | ||||
|   /* store final carry [if any] and increment ix offset  */ | ||||
|   *tmpc++ = u; | ||||
|   ++ix; | ||||
| 
 | ||||
|   /* now zero digits above the top */ | ||||
|   while (ix++ < olduse) { | ||||
| @ -5847,7 +5851,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback | ||||
| 
 | ||||
|    /* calc the maskOR_msb */ | ||||
|    maskOR_msb        = 0; | ||||
|    maskOR_msb_offset = (size - 2) >> 3; | ||||
|    maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0; | ||||
|    if (flags & LTM_PRIME_2MSB_ON) { | ||||
|       maskOR_msb     |= 1 << ((size - 2) & 7); | ||||
|    } else if (flags & LTM_PRIME_2MSB_OFF) { | ||||
| @ -5855,7 +5859,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback | ||||
|    }  | ||||
| 
 | ||||
|    /* get the maskOR_lsb */ | ||||
|    maskOR_lsb         = 0; | ||||
|    maskOR_lsb         = 1; | ||||
|    if (flags & LTM_PRIME_BBS) { | ||||
|       maskOR_lsb     |= 3; | ||||
|    } | ||||
| @ -6080,7 +6084,7 @@ mp_rand (mp_int * a, int digits) | ||||
|  */ | ||||
| 
 | ||||
| /* read a string [ASCII] in a given radix */ | ||||
| int mp_read_radix (mp_int * a, char *str, int radix) | ||||
| int mp_read_radix (mp_int * a, const char *str, int radix) | ||||
| { | ||||
|   int     y, res, neg; | ||||
|   char    ch; | ||||
| @ -6263,8 +6267,7 @@ mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c) | ||||
|  * precomputed via mp_reduce_setup. | ||||
|  * From HAC pp.604 Algorithm 14.42 | ||||
|  */ | ||||
| int | ||||
| mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | ||||
| int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | ||||
| { | ||||
|   mp_int  q; | ||||
|   int     res, um = m->used; | ||||
| @ -6361,8 +6364,7 @@ CLEANUP: | ||||
|  */ | ||||
| 
 | ||||
| /* reduces a modulo n where n is of the form 2**p - d */ | ||||
| int | ||||
| mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) | ||||
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d) | ||||
| { | ||||
|    mp_int q; | ||||
|    int    p, res; | ||||
| @ -6404,6 +6406,68 @@ ERR: | ||||
| 
 | ||||
| /* End: bn_mp_reduce_2k.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_reduce_2k_l.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_2K_L_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* reduces a modulo n where n is of the form 2**p - d 
 | ||||
|    This differs from reduce_2k since "d" can be larger | ||||
|    than a single digit. | ||||
| */ | ||||
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) | ||||
| { | ||||
|    mp_int q; | ||||
|    int    p, res; | ||||
|     | ||||
|    if ((res = mp_init(&q)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    p = mp_count_bits(n);     | ||||
| top: | ||||
|    /* q = a/2**p, a = a mod 2**p */ | ||||
|    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    /* q = q * d */ | ||||
|    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {  | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    /* a = a + q */ | ||||
|    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    if (mp_cmp_mag(a, n) != MP_LT) { | ||||
|       s_mp_sub(a, n, a); | ||||
|       goto top; | ||||
|    } | ||||
|     | ||||
| ERR: | ||||
|    mp_clear(&q); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| /* End: bn_mp_reduce_2k_l.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_reduce_2k_setup.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_2K_SETUP_C | ||||
| @ -6423,8 +6487,7 @@ ERR: | ||||
|  */ | ||||
| 
 | ||||
| /* determines the setup value */ | ||||
| int  | ||||
| mp_reduce_2k_setup(mp_int *a, mp_digit *d) | ||||
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d) | ||||
| { | ||||
|    int res, p; | ||||
|    mp_int tmp; | ||||
| @ -6452,6 +6515,50 @@ mp_reduce_2k_setup(mp_int *a, mp_digit *d) | ||||
| 
 | ||||
| /* End: bn_mp_reduce_2k_setup.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_reduce_2k_setup_l.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_2K_SETUP_L_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* determines the setup value */ | ||||
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) | ||||
| { | ||||
|    int    res; | ||||
|    mp_int tmp; | ||||
|     | ||||
|    if ((res = mp_init(&tmp)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
|    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { | ||||
|       goto ERR; | ||||
|    } | ||||
|     | ||||
| ERR: | ||||
|    mp_clear(&tmp); | ||||
|    return res; | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /* End: bn_mp_reduce_2k_setup_l.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_reduce_is_2k.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_IS_2K_C | ||||
| @ -6477,9 +6584,9 @@ int mp_reduce_is_2k(mp_int *a) | ||||
|    mp_digit iz; | ||||
|     | ||||
|    if (a->used == 0) { | ||||
|       return 0; | ||||
|       return MP_NO; | ||||
|    } else if (a->used == 1) { | ||||
|       return 1; | ||||
|       return MP_YES; | ||||
|    } else if (a->used > 1) { | ||||
|       iy = mp_count_bits(a); | ||||
|       iz = 1; | ||||
| @ -6488,7 +6595,7 @@ int mp_reduce_is_2k(mp_int *a) | ||||
|       /* Test every bit from the second digit up, must be 1 */ | ||||
|       for (ix = DIGIT_BIT; ix < iy; ix++) { | ||||
|           if ((a->dp[iw] & iz) == 0) { | ||||
|              return 0; | ||||
|              return MP_NO; | ||||
|           } | ||||
|           iz <<= 1; | ||||
|           if (iz > (mp_digit)MP_MASK) { | ||||
| @ -6497,13 +6604,57 @@ int mp_reduce_is_2k(mp_int *a) | ||||
|           } | ||||
|       } | ||||
|    } | ||||
|    return 1; | ||||
|    return MP_YES; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| /* End: bn_mp_reduce_is_2k.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_reduce_is_2k_l.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_IS_2K_L_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* determines if reduce_2k_l can be used */ | ||||
| int mp_reduce_is_2k_l(mp_int *a) | ||||
| { | ||||
|    int ix, iy; | ||||
|     | ||||
|    if (a->used == 0) { | ||||
|       return MP_NO; | ||||
|    } else if (a->used == 1) { | ||||
|       return MP_YES; | ||||
|    } else if (a->used > 1) { | ||||
|       /* if more than half of the digits are -1 we're sold */ | ||||
|       for (iy = ix = 0; ix < a->used; ix++) { | ||||
|           if (a->dp[ix] == MP_MASK) { | ||||
|               ++iy; | ||||
|           } | ||||
|       } | ||||
|       return (iy >= (a->used/2)) ? MP_YES : MP_NO; | ||||
|        | ||||
|    } | ||||
|    return MP_NO; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
| 
 | ||||
| /* End: bn_mp_reduce_is_2k_l.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_reduce_setup.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_REDUCE_SETUP_C | ||||
| @ -7138,8 +7289,7 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) | ||||
|  */ | ||||
| 
 | ||||
| /* store in signed [big endian] format */ | ||||
| int | ||||
| mp_to_signed_bin (mp_int * a, unsigned char *b) | ||||
| int mp_to_signed_bin (mp_int * a, unsigned char *b) | ||||
| { | ||||
|   int     res; | ||||
| 
 | ||||
| @ -7153,6 +7303,37 @@ mp_to_signed_bin (mp_int * a, unsigned char *b) | ||||
| 
 | ||||
| /* End: bn_mp_to_signed_bin.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_to_signed_bin_n.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_TO_SIGNED_BIN_N_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* store in signed [big endian] format */ | ||||
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) | ||||
| { | ||||
|    if (*outlen < (unsigned long)mp_signed_bin_size(a)) { | ||||
|       return MP_VAL; | ||||
|    } | ||||
|    *outlen = mp_signed_bin_size(a); | ||||
|    return mp_to_signed_bin(a, b); | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /* End: bn_mp_to_signed_bin_n.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_to_unsigned_bin.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_TO_UNSIGNED_BIN_C | ||||
| @ -7172,8 +7353,7 @@ mp_to_signed_bin (mp_int * a, unsigned char *b) | ||||
|  */ | ||||
| 
 | ||||
| /* store in unsigned [big endian] format */ | ||||
| int | ||||
| mp_to_unsigned_bin (mp_int * a, unsigned char *b) | ||||
| int mp_to_unsigned_bin (mp_int * a, unsigned char *b) | ||||
| { | ||||
|   int     x, res; | ||||
|   mp_int  t; | ||||
| @ -7202,6 +7382,37 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b) | ||||
| 
 | ||||
| /* End: bn_mp_to_unsigned_bin.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_to_unsigned_bin_n.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_TO_UNSIGNED_BIN_N_C | ||||
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | ||||
|  * | ||||
|  * LibTomMath is a library that provides multiple-precision | ||||
|  * integer arithmetic as well as number theoretic functionality. | ||||
|  * | ||||
|  * The library was designed directly after the MPI library by | ||||
|  * Michael Fromberger but has been written from scratch with | ||||
|  * additional optimizations in place. | ||||
|  * | ||||
|  * The library is free for all purposes without any express | ||||
|  * guarantee it works. | ||||
|  * | ||||
|  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
 | ||||
|  */ | ||||
| 
 | ||||
| /* store in unsigned [big endian] format */ | ||||
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen) | ||||
| { | ||||
|    if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) { | ||||
|       return MP_VAL; | ||||
|    } | ||||
|    *outlen = mp_unsigned_bin_size(a); | ||||
|    return mp_to_unsigned_bin(a, b); | ||||
| } | ||||
| #endif | ||||
| 
 | ||||
| /* End: bn_mp_to_unsigned_bin_n.c */ | ||||
| 
 | ||||
| /* Start: bn_mp_toom_mul.c */ | ||||
| #include <tommath.h> | ||||
| #ifdef BN_MP_TOOM_MUL_C | ||||
| @ -7894,8 +8105,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen) | ||||
|  */ | ||||
| 
 | ||||
| /* get the size for an unsigned equivalent */ | ||||
| int | ||||
| mp_unsigned_bin_size (mp_int * a) | ||||
| int mp_unsigned_bin_size (mp_int * a) | ||||
| { | ||||
|   int     size = mp_count_bits (a); | ||||
|   return (size / 8 + ((size & 7) != 0 ? 1 : 0)); | ||||
| @ -8218,11 +8428,12 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c) | ||||
|    #define TAB_SIZE 256 | ||||
| #endif | ||||
| 
 | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||||
| { | ||||
|   mp_int  M[TAB_SIZE], res, mu; | ||||
|   mp_digit buf; | ||||
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | ||||
|   int (*redux)(mp_int*,mp_int*,mp_int*); | ||||
| 
 | ||||
|   /* find window size */ | ||||
|   x = mp_count_bits (X); | ||||
| @ -8269,9 +8480,18 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|   if ((err = mp_init (&mu)) != MP_OKAY) { | ||||
|     goto LBL_M; | ||||
|   } | ||||
|   if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | ||||
|     goto LBL_MU; | ||||
|   } | ||||
|    | ||||
|   if (redmode == 0) { | ||||
|      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | ||||
|         goto LBL_MU; | ||||
|      } | ||||
|      redux = mp_reduce; | ||||
|   } else { | ||||
|      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_MU; | ||||
|      } | ||||
|      redux = mp_reduce_2k_l; | ||||
|   }     | ||||
| 
 | ||||
|   /* create M table
 | ||||
|    * | ||||
| @ -8293,11 +8513,14 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|   } | ||||
| 
 | ||||
|   for (x = 0; x < (winsize - 1); x++) { | ||||
|     /* square it */ | ||||
|     if ((err = mp_sqr (&M[1 << (winsize - 1)],  | ||||
|                        &M[1 << (winsize - 1)])) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|     if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | ||||
| 
 | ||||
|     /* reduce modulo P */ | ||||
|     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|   } | ||||
| @ -8309,7 +8532,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|     if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) { | ||||
|     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { | ||||
|       goto LBL_MU; | ||||
|     } | ||||
|   } | ||||
| @ -8358,7 +8581,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       continue; | ||||
| @ -8375,7 +8598,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|       } | ||||
| @ -8384,7 +8607,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
| 
 | ||||
| @ -8402,7 +8625,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
|       if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|         goto LBL_RES; | ||||
|       } | ||||
| 
 | ||||
| @ -8412,7 +8635,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||||
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) { | ||||
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||||
|           goto LBL_RES; | ||||
|         } | ||||
|       } | ||||
| @ -8803,11 +9026,12 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c) | ||||
|  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF | ||||
| ------------------------------------------------------------- | ||||
|  Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-) | ||||
|  AMD Athlon64           /GCC v3.4.4   /        74/       124/LTM 0.34 | ||||
|   | ||||
| */ | ||||
| 
 | ||||
| int     KARATSUBA_MUL_CUTOFF = 88,      /* Min. number of digits before Karatsuba multiplication is used. */ | ||||
|         KARATSUBA_SQR_CUTOFF = 128,     /* Min. number of digits before Karatsuba squaring is used. */ | ||||
| int     KARATSUBA_MUL_CUTOFF = 74,      /* Min. number of digits before Karatsuba multiplication is used. */ | ||||
|         KARATSUBA_SQR_CUTOFF = 124,     /* Min. number of digits before Karatsuba squaring is used. */ | ||||
|          | ||||
|         TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */ | ||||
|         TOOM_SQR_CUTOFF      = 400;  | ||||
|  | ||||
							
								
								
									
										15
									
								
								tommath.h
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								tommath.h
									
									
									
									
									
								
							| @ -429,6 +429,15 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d); | ||||
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | ||||
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); | ||||
| 
 | ||||
| /* returns true if a can be reduced with mp_reduce_2k_l */ | ||||
| int mp_reduce_is_2k_l(mp_int *a); | ||||
| 
 | ||||
| /* determines k value for 2k reduction */ | ||||
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); | ||||
| 
 | ||||
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ | ||||
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); | ||||
| 
 | ||||
| /* d = a**b (mod c) */ | ||||
| int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
| 
 | ||||
| @ -511,12 +520,14 @@ int mp_count_bits(mp_int *a); | ||||
| int mp_unsigned_bin_size(mp_int *a); | ||||
| int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c); | ||||
| int mp_to_unsigned_bin(mp_int *a, unsigned char *b); | ||||
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | ||||
| 
 | ||||
| int mp_signed_bin_size(mp_int *a); | ||||
| int mp_read_signed_bin(mp_int *a, unsigned char *b, int c); | ||||
| int mp_to_signed_bin(mp_int *a, unsigned char *b); | ||||
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); | ||||
| 
 | ||||
| int mp_read_radix(mp_int *a, char *str, int radix); | ||||
| int mp_read_radix(mp_int *a, const char *str, int radix); | ||||
| int mp_toradix(mp_int *a, char *str, int radix); | ||||
| int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); | ||||
| int mp_radix_size(mp_int *a, int radix, int *size); | ||||
| @ -554,7 +565,7 @@ int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); | ||||
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); | ||||
| int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); | ||||
| int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y); | ||||
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); | ||||
| void bn_reverse(unsigned char *s, int len); | ||||
| 
 | ||||
| extern const char *mp_s_rmap; | ||||
|  | ||||
							
								
								
									
										
											BIN
										
									
								
								tommath.pdf
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								tommath.pdf
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							| @ -66,7 +66,7 @@ QUALCOMM Australia \\ | ||||
| } | ||||
| } | ||||
| \maketitle | ||||
| This text has been placed in the public domain.  This text corresponds to the v0.30 release of the  | ||||
| This text has been placed in the public domain.  This text corresponds to the v0.34 release of the  | ||||
| LibTomMath project. | ||||
| 
 | ||||
| \begin{alltt} | ||||
|  | ||||
							
								
								
									
										1276
									
								
								tommath.tex
									
									
									
									
									
								
							
							
						
						
									
										1276
									
								
								tommath.tex
									
									
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @ -90,8 +90,11 @@ | ||||
| #define BN_MP_READ_UNSIGNED_BIN_C | ||||
| #define BN_MP_REDUCE_C | ||||
| #define BN_MP_REDUCE_2K_C | ||||
| #define BN_MP_REDUCE_2K_L_C | ||||
| #define BN_MP_REDUCE_2K_SETUP_C | ||||
| #define BN_MP_REDUCE_2K_SETUP_L_C | ||||
| #define BN_MP_REDUCE_IS_2K_C | ||||
| #define BN_MP_REDUCE_IS_2K_L_C | ||||
| #define BN_MP_REDUCE_SETUP_C | ||||
| #define BN_MP_RSHD_C | ||||
| #define BN_MP_SET_C | ||||
| @ -105,7 +108,9 @@ | ||||
| #define BN_MP_SUB_D_C | ||||
| #define BN_MP_SUBMOD_C | ||||
| #define BN_MP_TO_SIGNED_BIN_C | ||||
| #define BN_MP_TO_SIGNED_BIN_N_C | ||||
| #define BN_MP_TO_UNSIGNED_BIN_C | ||||
| #define BN_MP_TO_UNSIGNED_BIN_N_C | ||||
| #define BN_MP_TOOM_MUL_C | ||||
| #define BN_MP_TOOM_SQR_C | ||||
| #define BN_MP_TORADIX_C | ||||
| @ -324,11 +329,12 @@ | ||||
|    #define BN_MP_CLEAR_C | ||||
|    #define BN_MP_ABS_C | ||||
|    #define BN_MP_CLEAR_MULTI_C | ||||
|    #define BN_MP_REDUCE_IS_2K_L_C | ||||
|    #define BN_S_MP_EXPTMOD_C | ||||
|    #define BN_MP_DR_IS_MODULUS_C | ||||
|    #define BN_MP_REDUCE_IS_2K_C | ||||
|    #define BN_MP_ISODD_C | ||||
|    #define BN_MP_EXPTMOD_FAST_C | ||||
|    #define BN_S_MP_EXPTMOD_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_EXPTMOD_FAST_C) | ||||
| @ -725,6 +731,17 @@ | ||||
|    #define BN_MP_CLEAR_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_REDUCE_2K_L_C) | ||||
|    #define BN_MP_INIT_C | ||||
|    #define BN_MP_COUNT_BITS_C | ||||
|    #define BN_MP_DIV_2D_C | ||||
|    #define BN_MP_MUL_C | ||||
|    #define BN_S_MP_ADD_C | ||||
|    #define BN_MP_CMP_MAG_C | ||||
|    #define BN_S_MP_SUB_C | ||||
|    #define BN_MP_CLEAR_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_REDUCE_2K_SETUP_C) | ||||
|    #define BN_MP_INIT_C | ||||
|    #define BN_MP_COUNT_BITS_C | ||||
| @ -733,11 +750,22 @@ | ||||
|    #define BN_S_MP_SUB_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_REDUCE_2K_SETUP_L_C) | ||||
|    #define BN_MP_INIT_C | ||||
|    #define BN_MP_2EXPT_C | ||||
|    #define BN_MP_COUNT_BITS_C | ||||
|    #define BN_S_MP_SUB_C | ||||
|    #define BN_MP_CLEAR_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_REDUCE_IS_2K_C) | ||||
|    #define BN_MP_REDUCE_2K_C | ||||
|    #define BN_MP_COUNT_BITS_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_REDUCE_IS_2K_L_C) | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_REDUCE_SETUP_C) | ||||
|    #define BN_MP_2EXPT_C | ||||
|    #define BN_MP_DIV_C | ||||
| @ -815,6 +843,11 @@ | ||||
|    #define BN_MP_TO_UNSIGNED_BIN_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_TO_SIGNED_BIN_N_C) | ||||
|    #define BN_MP_SIGNED_BIN_SIZE_C | ||||
|    #define BN_MP_TO_SIGNED_BIN_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_TO_UNSIGNED_BIN_C) | ||||
|    #define BN_MP_INIT_COPY_C | ||||
|    #define BN_MP_ISZERO_C | ||||
| @ -822,6 +855,11 @@ | ||||
|    #define BN_MP_CLEAR_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_TO_UNSIGNED_BIN_N_C) | ||||
|    #define BN_MP_UNSIGNED_BIN_SIZE_C | ||||
|    #define BN_MP_TO_UNSIGNED_BIN_C | ||||
| #endif | ||||
| 
 | ||||
| #if defined(BN_MP_TOOM_MUL_C) | ||||
|    #define BN_MP_INIT_MULTI_C | ||||
|    #define BN_MP_MOD_2D_C | ||||
| @ -902,10 +940,12 @@ | ||||
|    #define BN_MP_INIT_C | ||||
|    #define BN_MP_CLEAR_C | ||||
|    #define BN_MP_REDUCE_SETUP_C | ||||
|    #define BN_MP_REDUCE_C | ||||
|    #define BN_MP_REDUCE_2K_SETUP_L_C | ||||
|    #define BN_MP_REDUCE_2K_L_C | ||||
|    #define BN_MP_MOD_C | ||||
|    #define BN_MP_COPY_C | ||||
|    #define BN_MP_SQR_C | ||||
|    #define BN_MP_REDUCE_C | ||||
|    #define BN_MP_MUL_C | ||||
|    #define BN_MP_SET_C | ||||
|    #define BN_MP_EXCH_C | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user