added libtommath-0.03
This commit is contained in:
		
							parent
							
								
									8c97c9e181
								
							
						
					
					
						commit
						f89172c3af
					
				
							
								
								
									
										452
									
								
								bn.c
									
									
									
									
									
								
							
							
						
						
									
										452
									
								
								bn.c
									
									
									
									
									
								
							| @ -113,11 +113,13 @@ int mp_set_int(mp_int *a, unsigned long b) | ||||
|    if ((res = mp_grow(a, 32/DIGIT_BIT + 1)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|    mp_zero(a); | ||||
|    /* set four bits at a time, simplest solution to the what if DIGIT_BIT==7 case */ | ||||
|    for (x = 0; x < 8; x++) { | ||||
|       mp_mul_2d(a, 4, a); | ||||
|       a->dp[0] |= (b>>28)&15; | ||||
|       b <<= 4; | ||||
|       a->used += 32/DIGIT_BIT + 1; | ||||
|    } | ||||
|    mp_clamp(a); | ||||
|    return MP_OKAY; | ||||
| @ -140,8 +142,9 @@ int mp_copy(mp_int *a, mp_int *b) | ||||
|    int res, n; | ||||
|     | ||||
|    /* if dst == src do nothing */ | ||||
|    if (a->dp == b->dp) | ||||
|    if (a == b || a->dp == b->dp) { | ||||
|       return MP_OKAY; | ||||
|    } | ||||
|     | ||||
|    /* grow dest */ | ||||
|    if ((res = mp_grow(b, a->used)) != MP_OKAY) { | ||||
| @ -338,15 +341,22 @@ int  mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d) | ||||
| { | ||||
|    mp_digit D, r, rr; | ||||
|    int x, res; | ||||
|    mp_int t; | ||||
|     | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    if (d != NULL) { | ||||
|       if ((res = mp_mod_2d(a, b, d)) != MP_OKAY) { | ||||
|       if ((res = mp_mod_2d(a, b, &t)) != MP_OKAY) { | ||||
|          mp_clear(&t); | ||||
|          return res; | ||||
|       } | ||||
|    } | ||||
|     | ||||
|    /* copy */ | ||||
|    if ((res = mp_copy(a, c)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
| @ -364,6 +374,12 @@ int  mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d) | ||||
|       } | ||||
|    } | ||||
|    mp_clamp(c); | ||||
|    if (d != NULL) { | ||||
|       res = mp_copy(&t, d); | ||||
|    } else { | ||||
|       res = MP_OKAY; | ||||
|    } | ||||
|    mp_clear(&t); | ||||
|    return MP_OKAY; | ||||
| } | ||||
| 
 | ||||
| @ -392,7 +408,7 @@ int mp_mul_2d(mp_int *a, int b, mp_int *c) | ||||
|    d = (mp_digit)(b % DIGIT_BIT);    | ||||
|    if (d != 0) { | ||||
|       r = 0; | ||||
|       for (x = 0; x < a->used; x++) { | ||||
|       for (x = 0; x < c->used; x++) { | ||||
|           rr = (c->dp[x] >> (DIGIT_BIT - d)) & ((mp_digit)((1U<<d)-1U)); | ||||
|           c->dp[x] = ((c->dp[x] << d) | r) & MP_MASK; | ||||
|           r  = rr; | ||||
| @ -405,13 +421,49 @@ int mp_mul_2d(mp_int *a, int b, mp_int *c) | ||||
| /* b = a/2 */ | ||||
| int mp_div_2(mp_int *a, mp_int *b) | ||||
| { | ||||
|    return mp_div_2d(a, 1, b, NULL); | ||||
|    mp_digit r, rr; | ||||
|    int x, res; | ||||
| 
 | ||||
|    /* copy */ | ||||
|    if ((res = mp_copy(a, b)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    r = 0; | ||||
|    for (x = b->used - 1; x >= 0; x--) { | ||||
|        rr = b->dp[x] & 1; | ||||
|        b->dp[x] = (b->dp[x] >> 1) | (r << (DIGIT_BIT-1)); | ||||
|        r  = rr; | ||||
|    } | ||||
|    mp_clamp(b); | ||||
|    return MP_OKAY; | ||||
| } | ||||
| 
 | ||||
| /* b = a*2 */ | ||||
| int mp_mul_2(mp_int *a, mp_int *b) | ||||
| { | ||||
|    return mp_mul_2d(a, 1, b); | ||||
|    mp_digit r, rr; | ||||
|    int x, res; | ||||
|     | ||||
|    /* copy */ | ||||
|    if ((res = mp_copy(a, b)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
| 
 | ||||
|    if ((res = mp_grow(b, b->used + 1)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|    b->used = b->alloc; | ||||
|     | ||||
|    /* shift any bit count < DIGIT_BIT */ | ||||
|    r = 0; | ||||
|    for (x = 0; x < b->used; x++) { | ||||
|        rr = (b->dp[x] >> (DIGIT_BIT - 1)) & 1; | ||||
|        b->dp[x] = ((b->dp[x] << 1) | r) & MP_MASK; | ||||
|        r  = rr; | ||||
|    } | ||||
|    mp_clamp(b); | ||||
|    return MP_OKAY; | ||||
| } | ||||
| 
 | ||||
| /* low level addition */ | ||||
| @ -526,8 +578,6 @@ static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs) | ||||
|    mp_word W[512], *_W; | ||||
|    mp_digit tmpx, *tmpt, *tmpy; | ||||
|     | ||||
| //   printf("\nHOLA\n");
 | ||||
|     | ||||
|    if ((res = mp_init_size(&t, digs)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
| @ -624,7 +674,7 @@ static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs) | ||||
|     | ||||
|    pa = a->used; | ||||
|    pb = b->used; | ||||
|    memset(W, 0, (pa + pb + 1) * sizeof(mp_word)); | ||||
|    memset(&W[digs], 0, (pa + pb + 1 - digs) * sizeof(mp_word)); | ||||
|    for (ix = 0; ix < pa; ix++) { | ||||
|        tmpx = a->dp[ix]; | ||||
|        tmpt = &(t.dp[digs]); | ||||
| @ -636,7 +686,7 @@ static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs) | ||||
|    } | ||||
|     | ||||
|    /* now convert the array W downto what we need */ | ||||
|    for (ix = 1; ix < (pa+pb+1); ix++) { | ||||
|    for (ix = digs+1; ix < (pa+pb+1); ix++) { | ||||
|        W[ix]      = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT)); | ||||
|        t.dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK); | ||||
|    } | ||||
| @ -665,7 +715,7 @@ static int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs) | ||||
|    mp_digit tmpx, *tmpt, *tmpy; | ||||
|     | ||||
|    /* can we use the fast multiplier? */ | ||||
|    if ((digs < 512) && digs < (1<<( (CHAR_BIT*sizeof(mp_word)) - (2*DIGIT_BIT)))) { | ||||
|    if (((a->used + b->used + 1) < 512) && MAX(a->used, b->used) < (1<<( (CHAR_BIT*sizeof(mp_word)) - (2*DIGIT_BIT)))) { | ||||
|       return fast_s_mp_mul_high_digs(a,b,c,digs); | ||||
|    }   | ||||
| 
 | ||||
| @ -959,13 +1009,14 @@ ERR : | ||||
| /* high level multiplication (handles sign) */ | ||||
| int mp_mul(mp_int *a, mp_int *b, mp_int *c) | ||||
| { | ||||
|    int res; | ||||
|    int res, neg; | ||||
|    neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | ||||
|    if (MIN(a->used, b->used) > KARATSUBA_MUL_CUTOFF) { | ||||
|       res = mp_karatsuba_mul(a, b, c); | ||||
|    } else { | ||||
|       res = s_mp_mul(a, b, c); | ||||
|    } | ||||
|    c->sign = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | ||||
|    c->sign = neg; | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| @ -1047,11 +1098,15 @@ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d) | ||||
|    mp_int q, x, y, t1, t2; | ||||
|    int res, n, t, i, norm, neg; | ||||
|     | ||||
|    /* is divisor zero ? */ | ||||
|    if (mp_iszero(b) == 1) { | ||||
|       return MP_VAL; | ||||
|    } | ||||
|     | ||||
|    /* if a < b then q=0, r = a */ | ||||
|    if (mp_cmp_mag(a, b) == MP_LT) { | ||||
|       if (d != NULL) { | ||||
|            res = mp_copy(a, d); | ||||
|            d->sign = a->sign; | ||||
|       } else { | ||||
|            res = MP_OKAY; | ||||
|       } | ||||
| @ -1182,6 +1237,8 @@ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d) | ||||
|     } | ||||
|      | ||||
|     /* now q is the quotient and x is the remainder [which we have to normalize] */ | ||||
|     /* get sign before writing to c */ | ||||
|     x.sign = a->sign; | ||||
|     if (c != NULL) { | ||||
|        mp_clamp(&q); | ||||
|        mp_copy(&q, c); | ||||
| @ -1189,7 +1246,6 @@ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d) | ||||
|     } | ||||
|      | ||||
|     if (d != NULL) { | ||||
|        x.sign = a->sign; | ||||
|        mp_div_2d(&x, norm, &x, NULL); | ||||
|        mp_clamp(&x); | ||||
|        mp_copy(&x, d); | ||||
| @ -1205,6 +1261,31 @@ __Q:   mp_clear(&q); | ||||
|    return res;    | ||||
| } | ||||
| 
 | ||||
| /* c = a mod b, 0 <= c < b */ | ||||
| int mp_mod(mp_int *a, mp_int *b, mp_int *c) | ||||
| { | ||||
|    mp_int t; | ||||
|    int res; | ||||
|     | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
| 
 | ||||
|    if ((res = mp_div(a, b, NULL, &t)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    if (t.sign == MP_NEG) { | ||||
|       res = mp_add(b, &t, c); | ||||
|    } else { | ||||
|       res = mp_copy(&t, c); | ||||
|    } | ||||
| 
 | ||||
|    mp_clear(&t); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| /* single digit addition */ | ||||
| int mp_add_d(mp_int *a, mp_digit b, mp_int *c) | ||||
| { | ||||
| @ -1259,6 +1340,7 @@ int mp_mul_d(mp_int *a, mp_digit b, mp_int *c) | ||||
|    } | ||||
|    t.dp[ix] = u; | ||||
|     | ||||
|    t.sign = a->sign; | ||||
|    mp_clamp(&t); | ||||
|    if ((res = mp_copy(&t, c)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
| @ -1295,50 +1377,144 @@ int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d) | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c) | ||||
| { | ||||
|    mp_int t, t2; | ||||
|    int res; | ||||
|        | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&t2)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    mp_set(&t, b); | ||||
|    mp_div(a, &t, NULL, &t2); | ||||
|     | ||||
|    if (t2.sign == MP_NEG) { | ||||
|       if ((res = mp_add_d(&t2, b, &t2)) != MP_OKAY) { | ||||
|          mp_clear(&t); | ||||
|          mp_clear(&t2); | ||||
|          return res; | ||||
|       } | ||||
|    } | ||||
|    *c = t2.dp[0]; | ||||
|    mp_clear(&t); | ||||
|    mp_clear(&t2); | ||||
|    return MP_OKAY; | ||||
| } | ||||
| 
 | ||||
| int mp_expt_d(mp_int *a, mp_digit b, mp_int *c) | ||||
| { | ||||
|    int res, x; | ||||
|    mp_int g; | ||||
|     | ||||
|    if ((res = mp_init_copy(&g, a)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|     | ||||
|    /* set initial result */ | ||||
|    mp_set(c, 1); | ||||
|     | ||||
|    for (x = 0; x < (int)DIGIT_BIT; x++) { | ||||
|        if ((res = mp_sqr(c, c)) != MP_OKAY) { | ||||
|           mp_clear(&g); | ||||
|           return res; | ||||
|        } | ||||
|         | ||||
|        if (b & (mp_digit)(1<<(DIGIT_BIT-1))) { | ||||
|           if ((res = mp_mul(c, &g, c)) != MP_OKAY) { | ||||
|              mp_clear(&g); | ||||
|              return res; | ||||
|           } | ||||
|        } | ||||
|         | ||||
|        b <<= 1; | ||||
|    } | ||||
|     | ||||
|    mp_clear(&g); | ||||
|    return MP_OKAY; | ||||
| } | ||||
| 
 | ||||
| /* simple modular functions */ | ||||
| 
 | ||||
| /* d = a + b (mod c) */ | ||||
| int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) | ||||
| { | ||||
|    int res; | ||||
|    mp_int t; | ||||
|     | ||||
|    if ((res = mp_add(a, b, d)) != MP_OKAY) { | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) {  | ||||
|       return res; | ||||
|    } | ||||
|    return mp_mod(d, c, d); | ||||
|     | ||||
|    if ((res = mp_add(a, b, &t)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|    res = mp_mod(&t, c, d); | ||||
|    mp_clear(&t); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| /* d = a - b (mod c) */ | ||||
| int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) | ||||
| { | ||||
|    int res; | ||||
|    mp_int t; | ||||
|     | ||||
|    if ((res = mp_sub(a, b, d)) != MP_OKAY) { | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) {  | ||||
|       return res; | ||||
|    } | ||||
|    return mp_mod(d, c, d); | ||||
|     | ||||
|    if ((res = mp_sub(a, b, &t)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|    res = mp_mod(&t, c, d); | ||||
|    mp_clear(&t); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| /* d = a * b (mod c) */ | ||||
| int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) | ||||
| { | ||||
|    int res; | ||||
|    mp_int t; | ||||
|     | ||||
|    if ((res = mp_mul(a, b, d)) != MP_OKAY) { | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) {  | ||||
|       return res; | ||||
|    } | ||||
|    return mp_mod(d, c, d); | ||||
|     | ||||
|    if ((res = mp_mul(a, b, &t)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|    res = mp_mod(&t, c, d); | ||||
|    mp_clear(&t); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| /* c = a * a (mod b) */ | ||||
| int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c) | ||||
| { | ||||
|    int res; | ||||
|    mp_int t; | ||||
|     | ||||
|    if ((res = mp_sqr(a, c)) != MP_OKAY) { | ||||
|    if ((res = mp_init(&t)) != MP_OKAY) {  | ||||
|       return res; | ||||
|    } | ||||
|    return mp_mod(c, b, c); | ||||
|     | ||||
|    if ((res = mp_sqr(a, &t)) != MP_OKAY) { | ||||
|       mp_clear(&t); | ||||
|       return res; | ||||
|    } | ||||
|    res = mp_mod(&t, b, c); | ||||
|    mp_clear(&t); | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| /* Greatest Common Divisor using the binary method [Algorithm B, page 338, vol2 of TAOCP] 
 | ||||
| @ -1462,106 +1638,183 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c) | ||||
|    return res; | ||||
| }    | ||||
| 
 | ||||
| /* computes the modular inverse via extended euclidean algorithm, that is c = 1/a mod b */ | ||||
| /* computes the modular inverse via binary extended euclidean algorithm, that is c = 1/a mod b */ | ||||
| int mp_invmod(mp_int *a, mp_int *b, mp_int *c) | ||||
| { | ||||
|    int res; | ||||
|    mp_int t1, t2, t3, u1, u2, u3, v1, v2, v3, q; | ||||
|    mp_int x, y, u, v, A, B, C, D; | ||||
|    int res, neg; | ||||
|     | ||||
|    if ((res = mp_init(&t1)) != MP_OKAY) { | ||||
|       return res; | ||||
|    if ((res = mp_init(&x)) != MP_OKAY) { | ||||
|       goto __ERR; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&t2)) != MP_OKAY) { | ||||
|       goto __T1; | ||||
|    if ((res = mp_init(&y)) != MP_OKAY) { | ||||
|       goto __X; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&t3)) != MP_OKAY) { | ||||
|       goto __T2; | ||||
|    if ((res = mp_init(&u)) != MP_OKAY) { | ||||
|       goto __Y; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&u1)) != MP_OKAY) { | ||||
|       goto __T3; | ||||
|    if ((res = mp_init(&v)) != MP_OKAY) { | ||||
|       goto __U; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&u2)) != MP_OKAY) { | ||||
|       goto __U1; | ||||
|    if ((res = mp_init(&A)) != MP_OKAY) { | ||||
|       goto __V; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&u3)) != MP_OKAY) { | ||||
|       goto __U2; | ||||
|    if ((res = mp_init(&B)) != MP_OKAY) { | ||||
|       goto __A; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&v1)) != MP_OKAY) { | ||||
|       goto __U3; | ||||
|    if ((res = mp_init(&C)) != MP_OKAY) { | ||||
|       goto __B; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&v2)) != MP_OKAY) { | ||||
|       goto __V1; | ||||
|    if ((res = mp_init(&D)) != MP_OKAY) { | ||||
|       goto __C; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&v3)) != MP_OKAY) { | ||||
|       goto __V2; | ||||
|    /* x = a, y = b */ | ||||
|    if ((res = mp_copy(a, &x)) != MP_OKAY) { | ||||
|       goto __D; | ||||
|    } | ||||
|    if ((res = mp_copy(b, &y)) != MP_OKAY) { | ||||
|       goto __D; | ||||
|    } | ||||
|     | ||||
|    if ((res = mp_init(&q)) != MP_OKAY) { | ||||
|       goto __V3; | ||||
|    if ((res = mp_abs(&x, &x)) != MP_OKAY) { | ||||
|       goto __D; | ||||
|    } | ||||
|     | ||||
|    /* (u1, u2, u3) = (1, 0, a) */ | ||||
|    mp_set(&u1, 1); | ||||
|    if ((res = mp_copy(a, &u3)) != MP_OKAY) { | ||||
|       goto __Q; | ||||
|    } | ||||
|     | ||||
|    /* (v1, v2, v3) = (0, 1, b) */ | ||||
|    mp_set(&u2, 1); | ||||
|    if ((res = mp_copy(b, &v3)) != MP_OKAY) { | ||||
|       goto __Q; | ||||
|    } | ||||
|     | ||||
|    while (mp_iszero(&v3) == 0) {  | ||||
|        if ((res = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { | ||||
|           goto __Q; | ||||
|        } | ||||
|         | ||||
|        /* (t1, t2, t3) = (u1, u2, u3) - q*(v1, v2, v3) */ | ||||
|        if ((res = mp_mul(&q, &v1, &t1)) != MP_OKAY)  { goto __Q; } | ||||
|        if ((res = mp_sub(&u1, &t1, &t1)) != MP_OKAY) { goto __Q; } | ||||
|        if ((res = mp_mul(&q, &v2, &t2)) != MP_OKAY)  { goto __Q; } | ||||
|        if ((res = mp_sub(&u2, &t2, &t2)) != MP_OKAY) { goto __Q; } | ||||
|        if ((res = mp_mul(&q, &v3, &t3)) != MP_OKAY)  { goto __Q; } | ||||
|        if ((res = mp_sub(&u3, &t3, &t3)) != MP_OKAY) { goto __Q; } | ||||
|         | ||||
|        /* u = v */ | ||||
|        if ((res = mp_copy(&v1, &u1)) != MP_OKAY)     { goto __Q; } | ||||
|        if ((res = mp_copy(&v2, &u2)) != MP_OKAY)     { goto __Q; } | ||||
|        if ((res = mp_copy(&v3, &u3)) != MP_OKAY)     { goto __Q; } | ||||
|         | ||||
|        /* v = t */ | ||||
|        if ((res = mp_copy(&t1, &v1)) != MP_OKAY)     { goto __Q; } | ||||
|        if ((res = mp_copy(&t2, &v2)) != MP_OKAY)     { goto __Q; } | ||||
|        if ((res = mp_copy(&t3, &v3)) != MP_OKAY)     { goto __Q; } | ||||
| 	} | ||||
| 	 | ||||
|    /* if u3 != 1, then there is no inverse */ | ||||
|    if (mp_cmp_d(&u3, 1) != MP_EQ) { | ||||
|    /* 2. [modified] if x,y are both even then return an error! */ | ||||
|    if (mp_iseven(&x) == 1 && mp_iseven(&y) == 1) { | ||||
|       res = MP_VAL; | ||||
|       goto __Q; | ||||
|       goto __D; | ||||
|    } | ||||
|     | ||||
|    /* u1 is the inverse */ | ||||
|    res = mp_copy(&u1, c); | ||||
| __Q : mp_clear(&q); | ||||
| __V3: mp_clear(&v3);    | ||||
| __V2: mp_clear(&v1);    | ||||
| __V1: mp_clear(&v1);    | ||||
| __U3: mp_clear(&u3);    | ||||
| __U2: mp_clear(&u2);    | ||||
| __U1: mp_clear(&u1);    | ||||
| __T3: mp_clear(&t3);    | ||||
| __T2: mp_clear(&t2);    | ||||
| __T1: mp_clear(&t1);    | ||||
|    /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | ||||
|    if ((res = mp_copy(&x, &u)) != MP_OKAY) { | ||||
|       goto __D; | ||||
|    } | ||||
|    if ((res = mp_copy(&y, &v)) != MP_OKAY) { | ||||
|       goto __D; | ||||
|    } | ||||
|    mp_set(&A, 1); | ||||
|    mp_set(&D, 1); | ||||
|     | ||||
| 
 | ||||
| top:    | ||||
|    /* 4.  while u is even do */ | ||||
|    while (mp_iseven(&u) == 1) { | ||||
|       /* 4.1 u = u/2 */ | ||||
|       if ((res = mp_div_2(&u, &u)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|       /* 4.2 if A or B is odd then */ | ||||
|       if (mp_iseven(&A) == 0 || mp_iseven(&B) == 0) { | ||||
|          /* A = (A+y)/2, B = (B-x)/2 */ | ||||
|          if ((res = mp_add(&A, &y, &A)) != MP_OKAY) { | ||||
|             goto __D; | ||||
|          } | ||||
|          if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) { | ||||
|             goto __D; | ||||
|          } | ||||
|       } | ||||
|       /* A = A/2, B = B/2 */ | ||||
| 	  if ((res = mp_div_2(&A, &A)) != MP_OKAY) { | ||||
| 	     goto __D; | ||||
| 	  } | ||||
| 	  if ((res = mp_div_2(&B, &B)) != MP_OKAY) { | ||||
| 	     goto __D; | ||||
| 	  } | ||||
|    } | ||||
|     | ||||
|    | ||||
|    /* 5.  while v is even do */ | ||||
|    while (mp_iseven(&v) == 1) { | ||||
|       /* 5.1 v = v/2 */ | ||||
|       if ((res = mp_div_2(&v, &v)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|       /* 5.2 if C,D are even then */ | ||||
|       if (mp_iseven(&C) == 0 || mp_iseven(&D) == 0) { | ||||
|          /* C = (C+y)/2, D = (D-x)/2 */ | ||||
|          if ((res = mp_add(&C, &y, &C)) != MP_OKAY) { | ||||
|             goto __D; | ||||
|          } | ||||
|          if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) { | ||||
|             goto __D; | ||||
|          } | ||||
|       } | ||||
|       /* C = C/2, D = D/2 */ | ||||
| 	  if ((res = mp_div_2(&C, &C)) != MP_OKAY) { | ||||
| 	     goto __D; | ||||
| 	  } | ||||
| 	  if ((res = mp_div_2(&D, &D)) != MP_OKAY) { | ||||
| 	     goto __D; | ||||
| 	  } | ||||
|    } | ||||
|     | ||||
|    /* 6.  if u >= v then */ | ||||
|    if (mp_cmp(&u, &v) != MP_LT) { | ||||
|       /* u = u - v, A = A - C, B = B - D */ | ||||
|       if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|     | ||||
|       if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|     | ||||
|       if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|    } else { | ||||
|       /* v - v - u, C = C - A, D = D - B */ | ||||
|       if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|     | ||||
|       if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|     | ||||
|       if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) { | ||||
|          goto __D; | ||||
|       } | ||||
|    } | ||||
|     | ||||
|    /* if not zero goto step 4 */ | ||||
|    if (mp_iszero(&u) == 0) goto top; | ||||
|     | ||||
|    /* now a = C, b = D, gcd == g*v */ | ||||
|   | ||||
|    /* if v != 1 then there is no inverse */ | ||||
|    if (mp_cmp_d(&v, 1) != MP_EQ) { | ||||
|       res = MP_VAL; | ||||
|       goto __D; | ||||
|    } | ||||
|     | ||||
|    /* a is now the inverse */ | ||||
|    neg = a->sign; | ||||
|    if (C.sign == MP_NEG) { | ||||
|       res = mp_add(b, &C, c); | ||||
|    } else { | ||||
|       res = mp_copy(&C, c); | ||||
|    } | ||||
|    c->sign = neg; | ||||
|     | ||||
| __D:   mp_clear(&D); | ||||
| __C:   mp_clear(&C); | ||||
| __B:   mp_clear(&B); | ||||
| __A:   mp_clear(&A); | ||||
| __V:   mp_clear(&v); | ||||
| __U:   mp_clear(&u); | ||||
| __Y:   mp_clear(&y); | ||||
| __X:   mp_clear(&x); | ||||
| __ERR: | ||||
|    return res; | ||||
| } | ||||
| 
 | ||||
| @ -1838,7 +2091,7 @@ int mp_count_bits(mp_int *a) | ||||
|    q = a->dp[a->used - 1]; | ||||
|    while (q) { | ||||
|       ++r; | ||||
|       q >>= 1UL; | ||||
|       q >>= ((mp_digit)1); | ||||
|    } | ||||
|    return r; | ||||
| } | ||||
| @ -1846,13 +2099,14 @@ int mp_count_bits(mp_int *a) | ||||
| /* reads a unsigned char array, assumes the msb is stored first [big endian] */ | ||||
| int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c) | ||||
| { | ||||
|    int res; | ||||
|    int res, n; | ||||
|    | ||||
|    mp_zero(a); | ||||
|    a->used = (c/DIGIT_BIT) + ((c % DIGIT_BIT) != 0 ? 1: 0); | ||||
|    n = (c/DIGIT_BIT) + ((c % DIGIT_BIT) != 0 ? 1: 0); | ||||
|    if ((res = mp_grow(a, a->used)) != MP_OKAY) { | ||||
|       return res; | ||||
|    } | ||||
|    a->used = n; | ||||
|    while (c-- > 0) { | ||||
|        if ((res = mp_mul_2d(a, 8, a)) != MP_OKAY) { | ||||
|           return res; | ||||
|  | ||||
							
								
								
									
										22
									
								
								bn.h
									
									
									
									
									
								
							
							
						
						
									
										22
									
								
								bn.h
									
									
									
									
									
								
							| @ -46,7 +46,9 @@ | ||||
|    #define DIGIT_BIT     ((CHAR_BIT * sizeof(mp_digit) - 1))  /* bits per digit */ | ||||
| #endif | ||||
| 
 | ||||
| #define MP_DIGIT_BIT     DIGIT_BIT | ||||
| #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) | ||||
| #define MP_DIGIT_MAX     MP_MASK    | ||||
| 
 | ||||
| /* equalities */ | ||||
| #define MP_LT        -1   /* less than */ | ||||
| @ -57,8 +59,9 @@ | ||||
| #define MP_NEG        1   /* negative */ | ||||
| 
 | ||||
| #define MP_OKAY       0   /* ok result */ | ||||
| #define MP_MEM        1   /* out of mem */ | ||||
| #define MP_VAL        2   /* invalid input */ | ||||
| #define MP_MEM        -2  /* out of mem */ | ||||
| #define MP_VAL        -3  /* invalid input */ | ||||
| #define MP_RANGE      MP_VAL | ||||
| 
 | ||||
| #define KARATSUBA_MUL_CUTOFF    80                /* Min. number of digits before Karatsuba multiplication is used. */ | ||||
| #define KARATSUBA_SQR_CUTOFF    80                /* Min. number of digits before Karatsuba squaring is used. */ | ||||
| @ -68,6 +71,10 @@ typedef struct  { | ||||
|     mp_digit *dp; | ||||
| } mp_int; | ||||
| 
 | ||||
| #define USED(m)    ((m)->used) | ||||
| #define DIGIT(m,k) ((m)->dp[k]) | ||||
| #define SIGN(m)    ((m)->sign) | ||||
| 
 | ||||
| /* ---> init and deinit bignum functions <--- */ | ||||
| 
 | ||||
| /* init a bignum */ | ||||
| @ -155,8 +162,8 @@ int mp_sqr(mp_int *a, mp_int *b); | ||||
| /* a/b => cb + d == a */ | ||||
| int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
| 
 | ||||
| /* c == a mod b */ | ||||
| #define mp_mod(a, b, c) mp_div(a, b, NULL, c) | ||||
| /* c = a mod b, 0 <= c < b  */ | ||||
| int mp_mod(mp_int *a, mp_int *b, mp_int *c); | ||||
| 
 | ||||
| /* ---> single digit functions <--- */ | ||||
| 
 | ||||
| @ -175,8 +182,11 @@ int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); | ||||
| /* a/b => cb + d == a */ | ||||
| int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); | ||||
| 
 | ||||
| /* c = a mod b */ | ||||
| #define mp_mod_d(a,b,c) mp_div_d(a, b, NULL, c) | ||||
| /* c = a^b */ | ||||
| int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); | ||||
| 
 | ||||
| /* c = a mod b, 0 <= c < b  */ | ||||
| int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); | ||||
| 
 | ||||
| /* ---> number theory <--- */ | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										57
									
								
								bn.tex
									
									
									
									
									
								
							
							
						
						
									
										57
									
								
								bn.tex
									
									
									
									
									
								
							| @ -1,7 +1,7 @@ | ||||
| \documentclass{article} | ||||
| \begin{document} | ||||
| 
 | ||||
| \title{LibTomMath v0.02 \\ A Free Multiple Precision Integer Library} | ||||
| \title{LibTomMath v0.03 \\ A Free Multiple Precision Integer Library} | ||||
| \author{Tom St Denis \\ tomstdenis@iahu.ca} | ||||
| \maketitle | ||||
| \newpage | ||||
| @ -82,6 +82,15 @@ used member refers to how many digits are actually used in the representation of | ||||
| to how many digits have been allocated off the heap.  There is also the $\beta$ quantity which is equal to $2^W$ where  | ||||
| $W$ is the number of bits in a digit (default is 28).   | ||||
| 
 | ||||
| \subsection{Calling Functions} | ||||
| Most functions expect pointers to mp\_int's as parameters.   To save on memory usage it is possible to have source | ||||
| variables as destinations.  For example: | ||||
| \begin{verbatim} | ||||
|    mp_add(&x, &y, &x);           /* x = x + y */ | ||||
|    mp_mul(&x, &z, &x);           /* x = x * z */ | ||||
|    mp_div_2(&x, &x);             /* x = x / 2 */ | ||||
| \end{verbatim} | ||||
| 
 | ||||
| \subsection{Basic Functionality} | ||||
| Essentially all LibTomMath functions return one of three values to indicate if the function worked as desired.  A  | ||||
| function will return \textbf{MP\_OKAY} if the function was successful.  A function will return \textbf{MP\_MEM} if | ||||
| @ -219,8 +228,8 @@ int mp_sqr(mp_int *a, mp_int *b); | ||||
| /* a/b => cb + d == a */ | ||||
| int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); | ||||
| 
 | ||||
| /* c == a mod b */ | ||||
| #define mp_mod(a, b, c) mp_div(a, b, NULL, c) | ||||
| /* c = a mod b, 0 <= c < b  */ | ||||
| int mp_mod(mp_int *a, mp_int *b, mp_int *c); | ||||
| \end{verbatim} | ||||
| 
 | ||||
| The \textbf{mp\_cmp} will compare two integers.  It will return \textbf{MP\_LT} if the first parameter is less than | ||||
| @ -251,8 +260,8 @@ int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); | ||||
| /* a/b => cb + d == a */ | ||||
| int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); | ||||
| 
 | ||||
| /* c = a mod b */ | ||||
| #define mp_mod_d(a,b,c) mp_div_d(a, b, NULL, c) | ||||
| /* c = a mod b, 0 <= c < b  */ | ||||
| int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); | ||||
| \end{verbatim} | ||||
| 
 | ||||
| Note that care should be taken for the value of the digit passed.  By default, any 28-bit integer is a valid digit that can | ||||
| @ -328,27 +337,27 @@ average.  The following results were observed. | ||||
| \begin{tabular}{c|c|c|c} | ||||
| \hline \textbf{Operation} & \textbf{Size (bits)} & \textbf{Time with MPI (cycles)} & \textbf{Time with LibTomMath (cycles)} \\ | ||||
| \hline | ||||
| Multiply & 128 & 1,394  & 893  \\ | ||||
| Multiply & 256 & 2,559  & 1,744  \\ | ||||
| Multiply & 512 & 7,919  & 4,484  \\ | ||||
| Multiply & 1024 & 28,460  & 9,326, \\ | ||||
| Multiply & 2048 & 109,637  & 30,140  \\ | ||||
| Multiply & 4096 & 467,226  & 122,290  \\ | ||||
| Multiply & 128 & 1,426   & 928   \\ | ||||
| Multiply & 256 & 2,551   & 1,787   \\ | ||||
| Multiply & 512 & 7,913   & 3,458   \\ | ||||
| Multiply & 1024 & 28,496   & 9,271  \\ | ||||
| Multiply & 2048 & 109,897   & 29,917   \\ | ||||
| Multiply & 4096 & 469,970   & 123,934   \\ | ||||
| \hline  | ||||
| Square & 128 & 1,288  & 1,172  \\ | ||||
| Square & 256 & 1,705  & 2,162  \\ | ||||
| Square & 512 & 5,365  & 3,723  \\ | ||||
| Square & 1024 & 18,836  & 9,063  \\ | ||||
| Square & 2048 & 72,334  & 27,489  \\ | ||||
| Square & 4096 & 306,252  & 110,372  \\ | ||||
| Square & 128 & 1,319   & 1,230   \\ | ||||
| Square & 256 & 1,776   & 2,131   \\ | ||||
| Square & 512 & 5,399  & 3,694   \\ | ||||
| Square & 1024 & 18,991  & 9,172   \\ | ||||
| Square & 2048 & 72,126  & 27,352   \\ | ||||
| Square & 4096 & 306,269  & 110,607  \\ | ||||
| \hline  | ||||
| Exptmod & 512 & 30,497,732  & 6,898,504  \\ | ||||
| Exptmod & 768 & 98,943,020  & 15,510,779  \\ | ||||
| Exptmod & 1024 & 221,123,749  & 27,962,904  \\ | ||||
| Exptmod & 2048 & 1,694,796,907  & 146,631,975  \\ | ||||
| Exptmod & 2560 & 3,262,360,107  & 305,530,060  \\ | ||||
| Exptmod & 3072 & 5,647,243,373  & 472,572,762  \\ | ||||
| Exptmod & 4096 & 13,345,194,048  & 984,415,240   | ||||
| Exptmod & 512 & 32,021,586  & 6,880,075  \\ | ||||
| Exptmod & 768 & 97,595,492  & 15,202,614  \\ | ||||
| Exptmod & 1024 & 223,302,532  & 28,081,865   \\ | ||||
| Exptmod & 2048 & 1,682,223,369   & 146,545,454   \\ | ||||
| Exptmod & 2560 & 3,268,615,571   & 310,970,112   \\ | ||||
| Exptmod & 3072 & 5,597,240,141   & 480,703,712   \\ | ||||
| Exptmod & 4096 & 13,347,270,891   & 985,918,868    | ||||
| 
 | ||||
| \end{tabular} | ||||
| \end{center} | ||||
|  | ||||
							
								
								
									
										12
									
								
								changes.txt
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								changes.txt
									
									
									
									
									
								
							| @ -1,3 +1,15 @@ | ||||
| Dec 27th, 2002 | ||||
| v0.03  -- Sped up s_mp_mul_high_digs by not computing the carries of the lower digits | ||||
|        -- Fixed a bug where mp_set_int wouldn't zero the value first and set the used member. | ||||
|        -- fixed a bug in s_mp_mul_high_digs where the limit placed on the result digits was not calculated properly | ||||
|        -- fixed bugs in add/sub/mul/sqr_mod functions where if the modulus and dest were the same it wouldn't work | ||||
|        -- fixed a bug in mp_mod and mp_mod_d concerning negative inputs | ||||
|        -- mp_mul_d didn't preserve sign | ||||
|        -- Many many many many fixes | ||||
|        -- Works in LibTomCrypt now :-) | ||||
|        -- Added iterations to the timing demos... more accurate. | ||||
|        -- Tom needs a job.        | ||||
| 
 | ||||
| Dec 26th, 2002 | ||||
| v0.02  -- Fixed a few "slips" in the manual.  This is "LibTomMath" afterall :-) | ||||
|        -- Added mp_cmp_mag, mp_neg, mp_abs and mp_radix_size that were missing. | ||||
|  | ||||
							
								
								
									
										92
									
								
								demo.c
									
									
									
									
									
								
							
							
						
						
									
										92
									
								
								demo.c
									
									
									
									
									
								
							| @ -21,22 +21,37 @@ void reset(void) { _tt = clock(); } | ||||
| unsigned long long rdtsc(void) { return clock() - _tt; } | ||||
| #endif | ||||
|     | ||||
| static void draw(mp_int *a) | ||||
| void draw(mp_int *a) | ||||
| { | ||||
|    char buf[4096]; | ||||
|    int x; | ||||
|    printf("a->used  == %d\na->alloc == %d\na->sign  == %d\n", a->used, a->alloc, a->sign); | ||||
|    mp_toradix(a, buf, 10); | ||||
|    printf("num == %s\n", buf); | ||||
|    printf("\n"); | ||||
| } | ||||
| 
 | ||||
| unsigned long lfsr = 0xAAAAAAAAUL; | ||||
| 
 | ||||
| int lbit(void) | ||||
| { | ||||
|    if (lfsr & 0x80000000UL) { | ||||
|       lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL; | ||||
|       return 1; | ||||
|    } else { | ||||
|       lfsr <<= 1; | ||||
|       return 0; | ||||
|    } | ||||
| }    | ||||
|       | ||||
| 
 | ||||
| 
 | ||||
| int main(void) | ||||
| { | ||||
|    mp_int a, b, c, d, e, f; | ||||
|    unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n; | ||||
|    unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n; | ||||
|    unsigned char cmd[4096], buf[4096]; | ||||
|    int rr; | ||||
|    mp_digit tom; | ||||
|     | ||||
| #ifdef TIMER | ||||
|    int n; | ||||
| @ -50,17 +65,21 @@ int main(void) | ||||
|    mp_init(&e); | ||||
|    mp_init(&f);  | ||||
|     | ||||
|    mp_read_radix(&a, "-2", 10); | ||||
|    mp_read_radix(&b, "2", 10); | ||||
|    mp_expt_d(&a, 3, &a); | ||||
|    draw(&a); | ||||
|     | ||||
| #ifdef TIMER    | ||||
| 
 | ||||
|    mp_read_radix(&a, "340282366920938463463374607431768211455", 10); | ||||
|    while (a.used * DIGIT_BIT < 8192) { | ||||
|       reset(); | ||||
|       for (rr = 0; rr < 10000; rr++) { | ||||
|       for (rr = 0; rr < 100000; rr++) { | ||||
|           mp_mul(&a, &a, &b); | ||||
|       } | ||||
|       tt = rdtsc(); | ||||
|       printf("Multiplying  %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)10000)); | ||||
|       printf("Multiplying  %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)100000)); | ||||
|       mp_copy(&b, &a); | ||||
|    } | ||||
| 
 | ||||
| @ -68,11 +87,11 @@ int main(void) | ||||
|    mp_read_radix(&a, "340282366920938463463374607431768211455", 10); | ||||
|    while (a.used * DIGIT_BIT < 8192) { | ||||
|       reset(); | ||||
|       for (rr = 0; rr < 10000; rr++) { | ||||
|       for (rr = 0; rr < 100000; rr++) { | ||||
|           mp_sqr(&a, &b); | ||||
|       } | ||||
|       tt = rdtsc(); | ||||
|       printf("Squaring %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)10000)); | ||||
|       printf("Squaring %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)100000)); | ||||
|       mp_copy(&b, &a); | ||||
|    } | ||||
| 
 | ||||
| @ -87,19 +106,18 @@ int main(void) | ||||
|          "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979", | ||||
|          NULL          | ||||
|       }; | ||||
|    srand(time(NULL)); | ||||
|    for (n = 0; primes[n]; n++) { | ||||
|       mp_read_radix(&a, primes[n], 10); | ||||
|       mp_zero(&b); | ||||
|       for (rr = 0; rr < mp_count_bits(&a); rr++) { | ||||
|          mp_mul_2d(&b, 1, &b); | ||||
|          b.dp[0] |= (rand()&1); | ||||
|          b.dp[0] |= lbit(); | ||||
|       } | ||||
|       mp_sub_d(&a, 1, &c); | ||||
|       mp_mod(&b, &c, &b); | ||||
|       mp_set(&c, 3); | ||||
|       reset(); | ||||
|       for (rr = 0; rr < 20; rr++) { | ||||
|       for (rr = 0; rr < 35; rr++) { | ||||
|           mp_exptmod(&c, &b, &a, &d); | ||||
|       } | ||||
|       tt = rdtsc(); | ||||
| @ -112,15 +130,15 @@ int main(void) | ||||
|          draw(&d); | ||||
|          exit(0); | ||||
|       } | ||||
|       printf("Exponentiating  %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)20)); | ||||
|       printf("Exponentiating  %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)35)); | ||||
|    } | ||||
|    } | ||||
|     | ||||
| #endif    | ||||
| 
 | ||||
|    expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = 0;    | ||||
|    inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = 0;    | ||||
|    for (;;) { | ||||
|        printf("add=%7lu sub=%7lu mul=%7lu div=%7lu sqr=%7lu mul2d=%7lu div2d=%7lu gcd=%7lu lcm=%7lu expt=%7lu\r", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n); | ||||
|        printf("%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu\r", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n); | ||||
|        fgets(cmd, 4095, stdin); | ||||
|        cmd[strlen(cmd)-1] = 0; | ||||
|        printf("%s  ]\r",cmd); | ||||
| @ -161,6 +179,33 @@ int main(void) | ||||
| draw(&a);draw(&b);draw(&c);draw(&d);              | ||||
|              return 0; | ||||
|           } | ||||
|            | ||||
|           /* test the sign/unsigned storage functions */ | ||||
|            | ||||
|           rr = mp_signed_bin_size(&c); | ||||
|           mp_to_signed_bin(&c, cmd); | ||||
|           memset(cmd+rr, rand()&255, sizeof(cmd)-rr); | ||||
|           mp_read_signed_bin(&d, cmd, rr); | ||||
|           if (mp_cmp(&c, &d) != MP_EQ) { | ||||
|              printf("mp_signed_bin failure!\n"); | ||||
|              draw(&c); | ||||
|              draw(&d); | ||||
|              return 0; | ||||
|           } | ||||
|                      | ||||
|            | ||||
|           rr = mp_unsigned_bin_size(&c); | ||||
|           mp_to_unsigned_bin(&c, cmd); | ||||
|           memset(cmd+rr, rand()&255, sizeof(cmd)-rr); | ||||
|           mp_read_unsigned_bin(&d, cmd, rr); | ||||
|           if (mp_cmp_mag(&c, &d) != MP_EQ) { | ||||
|              printf("mp_unsigned_bin failure!\n"); | ||||
|              draw(&c); | ||||
|              draw(&d); | ||||
|              return 0; | ||||
|           } | ||||
|            | ||||
|            | ||||
|        } else if (!strcmp(cmd, "sub")) { ++sub_n; | ||||
|           fgets(buf, 4095, stdin);  mp_read_radix(&a, buf, 10); | ||||
|           fgets(buf, 4095, stdin);  mp_read_radix(&b, buf, 10); | ||||
| @ -210,7 +255,7 @@ draw(&a);draw(&b);draw(&c); | ||||
|           mp_gcd(&a, &b, &d); | ||||
|           d.sign = c.sign; | ||||
|           if (mp_cmp(&c, &d) != MP_EQ) { | ||||
|              printf("gcd %lu failure!\n", sqr_n);  | ||||
|              printf("gcd %lu failure!\n", gcd_n);  | ||||
| draw(&a);draw(&b);draw(&c);draw(&d); | ||||
|              return 0; | ||||
|           } | ||||
| @ -221,7 +266,7 @@ draw(&a);draw(&b);draw(&c);draw(&d); | ||||
|              mp_lcm(&a, &b, &d); | ||||
|              d.sign = c.sign; | ||||
|              if (mp_cmp(&c, &d) != MP_EQ) { | ||||
|                 printf("lcm %lu failure!\n", sqr_n);  | ||||
|                 printf("lcm %lu failure!\n", lcm_n);  | ||||
|    draw(&a);draw(&b);draw(&c);draw(&d); | ||||
|                 return 0; | ||||
|              } | ||||
| @ -232,11 +277,26 @@ draw(&a);draw(&b);draw(&c);draw(&d); | ||||
|              fgets(buf, 4095, stdin);  mp_read_radix(&d, buf, 10); | ||||
|              mp_exptmod(&a, &b, &c, &e); | ||||
|              if (mp_cmp(&d, &e) != MP_EQ) { | ||||
|                 printf("expt %lu failure!\n", sqr_n);  | ||||
|                 printf("expt %lu failure!\n", expt_n);  | ||||
|    draw(&a);draw(&b);draw(&c);draw(&d); draw(&e); | ||||
|                 return 0; | ||||
|              } | ||||
|        } else if (!strcmp(cmd, "invmod")) {  ++inv_n; | ||||
|              fgets(buf, 4095, stdin);  mp_read_radix(&a, buf, 10); | ||||
|              fgets(buf, 4095, stdin);  mp_read_radix(&b, buf, 10); | ||||
|              fgets(buf, 4095, stdin);  mp_read_radix(&c, buf, 10); | ||||
|              mp_invmod(&a, &b, &d); | ||||
|              mp_mulmod(&d,&a,&b,&e); | ||||
|              if (mp_cmp_d(&e, 1) != MP_EQ) { | ||||
|                 printf("inv [wrong value from MPI?!] failure\n"); | ||||
|                 draw(&a);draw(&b);draw(&c);draw(&d); | ||||
|                 mp_gcd(&a, &b, &e); | ||||
|                 draw(&e); | ||||
|                 return 0; | ||||
|              } | ||||
|                  | ||||
|        } | ||||
|         | ||||
|    } | ||||
|    return 0;    | ||||
| } | ||||
|  | ||||
							
								
								
									
										2
									
								
								makefile
									
									
									
									
									
								
							
							
						
						
									
										2
									
								
								makefile
									
									
									
									
									
								
							| @ -1,7 +1,7 @@ | ||||
| CC = gcc | ||||
| CFLAGS  += -Wall -W -O3 -funroll-loops | ||||
| 
 | ||||
| VERSION=0.02 | ||||
| VERSION=0.03 | ||||
| 
 | ||||
| default: test | ||||
| 
 | ||||
|  | ||||
| @ -82,7 +82,7 @@ int main(void) | ||||
|    rng = fopen("/dev/urandom", "rb"); | ||||
| 
 | ||||
|    for (;;) { | ||||
|        n = fgetc(rng) % 10; | ||||
|        n = fgetc(rng) % 11; | ||||
| 
 | ||||
|    if (n == 0) { | ||||
|        /* add tests */ | ||||
| @ -211,6 +211,21 @@ int main(void) | ||||
|       printf("%s\n", buf);       | ||||
|       mp_todecimal(&d, buf); | ||||
|       printf("%s\n", buf);       | ||||
|    } else if (n == 10) { | ||||
|       /* invmod test */ | ||||
|       rand_num2(&a); | ||||
|       rand_num2(&b); | ||||
|       b.sign = MP_ZPOS; | ||||
|       mp_gcd(&a, &b, &c); | ||||
|       if (mp_cmp_d(&c, 1) != 0) continue; | ||||
|       mp_invmod(&a, &b, &c); | ||||
|       printf("invmod\n"); | ||||
|       mp_todecimal(&a, buf); | ||||
|       printf("%s\n", buf);       | ||||
|       mp_todecimal(&b, buf); | ||||
|       printf("%s\n", buf);       | ||||
|       mp_todecimal(&c, buf); | ||||
|       printf("%s\n", buf);       | ||||
|    }  | ||||
|    } | ||||
|    fclose(rng); | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user