154 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_FAST_MP_INVMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  */
 | |
| 
 | |
| /* computes the modular inverse via binary extended euclidean algorithm,
 | |
|  * that is c = 1/a mod b
 | |
|  *
 | |
|  * Based on slow invmod except this is optimized for the case where b is
 | |
|  * odd as per HAC Note 14.64 on pp. 610
 | |
|  */
 | |
| int fast_mp_invmod(const mp_int *a, const mp_int *b, mp_int *c)
 | |
| {
 | |
|    mp_int  x, y, u, v, B, D;
 | |
|    int     res, neg;
 | |
| 
 | |
|    /* 2. [modified] b must be odd   */
 | |
|    if (mp_iseven(b) == MP_YES) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* init all our temps */
 | |
|    if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    /* x == modulus, y == value to invert */
 | |
|    if ((res = mp_copy(b, &x)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
| 
 | |
|    /* we need y = |a| */
 | |
|    if ((res = mp_mod(a, b, &y)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
| 
 | |
|    /* if one of x,y is zero return an error! */
 | |
|    if ((mp_iszero(&x) == MP_YES) || (mp_iszero(&y) == MP_YES)) {
 | |
|       res = MP_VAL;
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
| 
 | |
|    /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|    if ((res = mp_copy(&x, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
|    if ((res = mp_copy(&y, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
|    mp_set(&D, 1uL);
 | |
| 
 | |
| top:
 | |
|    /* 4.  while u is even do */
 | |
|    while (mp_iseven(&u) == MP_YES) {
 | |
|       /* 4.1 u = u/2 */
 | |
|       if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       /* 4.2 if B is odd then */
 | |
|       if (mp_isodd(&B) == MP_YES) {
 | |
|          if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
 | |
|             goto LBL_ERR;
 | |
|          }
 | |
|       }
 | |
|       /* B = B/2 */
 | |
|       if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* 5.  while v is even do */
 | |
|    while (mp_iseven(&v) == MP_YES) {
 | |
|       /* 5.1 v = v/2 */
 | |
|       if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       /* 5.2 if D is odd then */
 | |
|       if (mp_isodd(&D) == MP_YES) {
 | |
|          /* D = (D-x)/2 */
 | |
|          if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
 | |
|             goto LBL_ERR;
 | |
|          }
 | |
|       }
 | |
|       /* D = D/2 */
 | |
|       if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* 6.  if u >= v then */
 | |
|    if (mp_cmp(&u, &v) != MP_LT) {
 | |
|       /* u = u - v, B = B - D */
 | |
|       if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|    } else {
 | |
|       /* v - v - u, D = D - B */
 | |
|       if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* if not zero goto step 4 */
 | |
|    if (mp_iszero(&u) == MP_NO) {
 | |
|       goto top;
 | |
|    }
 | |
| 
 | |
|    /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|    /* if v != 1 then there is no inverse */
 | |
|    if (mp_cmp_d(&v, 1uL) != MP_EQ) {
 | |
|       res = MP_VAL;
 | |
|       goto LBL_ERR;
 | |
|    }
 | |
| 
 | |
|    /* b is now the inverse */
 | |
|    neg = a->sign;
 | |
|    while (D.sign == MP_NEG) {
 | |
|       if ((res = mp_add(&D, b, &D)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|    }
 | |
|    mp_exch(&D, c);
 | |
|    c->sign = neg;
 | |
|    res = MP_OKAY;
 | |
| 
 | |
| LBL_ERR:
 | |
|    mp_clear_multi(&x, &y, &u, &v, &B, &D, NULL);
 | |
|    return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |