118 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			118 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_JACOBI_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  */
 | |
| 
 | |
| /* computes the jacobi c = (a | n) (or Legendre if n is prime)
 | |
|  * HAC pp. 73 Algorithm 2.149
 | |
|  * HAC is wrong here, as the special case of (0 | 1) is not
 | |
|  * handled correctly.
 | |
|  */
 | |
| int mp_jacobi(const mp_int *a, const mp_int *n, int *c)
 | |
| {
 | |
|    mp_int  a1, p1;
 | |
|    int     k, s, r, res;
 | |
|    mp_digit residue;
 | |
| 
 | |
|    /* if a < 0 return MP_VAL */
 | |
|    if (mp_isneg(a) == MP_YES) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* if n <= 0 return MP_VAL */
 | |
|    if (mp_cmp_d(n, 0uL) != MP_GT) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* step 1. handle case of a == 0 */
 | |
|    if (mp_iszero(a) == MP_YES) {
 | |
|       /* special case of a == 0 and n == 1 */
 | |
|       if (mp_cmp_d(n, 1uL) == MP_EQ) {
 | |
|          *c = 1;
 | |
|       } else {
 | |
|          *c = 0;
 | |
|       }
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    /* step 2.  if a == 1, return 1 */
 | |
|    if (mp_cmp_d(a, 1uL) == MP_EQ) {
 | |
|       *c = 1;
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    /* default */
 | |
|    s = 0;
 | |
| 
 | |
|    /* step 3.  write a = a1 * 2**k  */
 | |
|    if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&p1)) != MP_OKAY) {
 | |
|       goto LBL_A1;
 | |
|    }
 | |
| 
 | |
|    /* divide out larger power of two */
 | |
|    k = mp_cnt_lsb(&a1);
 | |
|    if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
 | |
|       goto LBL_P1;
 | |
|    }
 | |
| 
 | |
|    /* step 4.  if e is even set s=1 */
 | |
|    if (((unsigned)k & 1u) == 0u) {
 | |
|       s = 1;
 | |
|    } else {
 | |
|       /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
 | |
|       residue = n->dp[0] & 7u;
 | |
| 
 | |
|       if ((residue == 1u) || (residue == 7u)) {
 | |
|          s = 1;
 | |
|       } else if ((residue == 3u) || (residue == 5u)) {
 | |
|          s = -1;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
 | |
|    if (((n->dp[0] & 3u) == 3u) && ((a1.dp[0] & 3u) == 3u)) {
 | |
|       s = -s;
 | |
|    }
 | |
| 
 | |
|    /* if a1 == 1 we're done */
 | |
|    if (mp_cmp_d(&a1, 1uL) == MP_EQ) {
 | |
|       *c = s;
 | |
|    } else {
 | |
|       /* n1 = n mod a1 */
 | |
|       if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) {
 | |
|          goto LBL_P1;
 | |
|       }
 | |
|       if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) {
 | |
|          goto LBL_P1;
 | |
|       }
 | |
|       *c = s * r;
 | |
|    }
 | |
| 
 | |
|    /* done */
 | |
|    res = MP_OKAY;
 | |
| LBL_P1:
 | |
|    mp_clear(&p1);
 | |
| LBL_A1:
 | |
|    mp_clear(&a1);
 | |
|    return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |