130 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_N_ROOT_EX_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Unlicense
 | |
|  */
 | |
| 
 | |
| /* find the n'th root of an integer
 | |
|  *
 | |
|  * Result found such that (c)**b <= a and (c+1)**b > a
 | |
|  *
 | |
|  * This algorithm uses Newton's approximation
 | |
|  * x[i+1] = x[i] - f(x[i])/f'(x[i])
 | |
|  * which will find the root in log(N) time where
 | |
|  * each step involves a fair bit.  This is not meant to
 | |
|  * find huge roots [square and cube, etc].
 | |
|  */
 | |
| int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast)
 | |
| {
 | |
|    mp_int  t1, t2, t3, a_;
 | |
|    int     res;
 | |
| 
 | |
|    /* input must be positive if b is even */
 | |
|    if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&t1)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&t2)) != MP_OKAY) {
 | |
|       goto LBL_T1;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&t3)) != MP_OKAY) {
 | |
|       goto LBL_T2;
 | |
|    }
 | |
| 
 | |
|    /* if a is negative fudge the sign but keep track */
 | |
|    a_ = *a;
 | |
|    a_.sign = MP_ZPOS;
 | |
| 
 | |
|    /* t2 = 2 */
 | |
|    mp_set(&t2, 2uL);
 | |
| 
 | |
|    do {
 | |
|       /* t1 = t2 */
 | |
|       if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
 | |
| 
 | |
|       /* t3 = t1**(b-1) */
 | |
|       if ((res = mp_expt_d_ex(&t1, b - 1u, &t3, fast)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       /* numerator */
 | |
|       /* t2 = t1**b */
 | |
|       if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       /* t2 = t1**b - a */
 | |
|       if ((res = mp_sub(&t2, &a_, &t2)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       /* denominator */
 | |
|       /* t3 = t1**(b-1) * b  */
 | |
|       if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       /* t3 = (t1**b - a)/(b * t1**(b-1)) */
 | |
|       if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
|    }  while (mp_cmp(&t1, &t2) != MP_EQ);
 | |
| 
 | |
|    /* result can be off by a few so check */
 | |
|    for (;;) {
 | |
|       if ((res = mp_expt_d_ex(&t1, b, &t2, fast)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
| 
 | |
|       if (mp_cmp(&t2, &a_) == MP_GT) {
 | |
|          if ((res = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) {
 | |
|             goto LBL_T3;
 | |
|          }
 | |
|       } else {
 | |
|          break;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* set the result */
 | |
|    mp_exch(&t1, c);
 | |
| 
 | |
|    /* set the sign of the result */
 | |
|    c->sign = a->sign;
 | |
| 
 | |
|    res = MP_OKAY;
 | |
| 
 | |
| LBL_T3:
 | |
|    mp_clear(&t3);
 | |
| LBL_T2:
 | |
|    mp_clear(&t2);
 | |
| LBL_T1:
 | |
|    mp_clear(&t1);
 | |
|    return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |