157 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			157 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_PRIME_NEXT_PRIME_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Unlicense
 | |
|  */
 | |
| 
 | |
| /* finds the next prime after the number "a" using "t" trials
 | |
|  * of Miller-Rabin.
 | |
|  *
 | |
|  * bbs_style = 1 means the prime must be congruent to 3 mod 4
 | |
|  */
 | |
| int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
 | |
| {
 | |
|    int      err, res = MP_NO, x, y;
 | |
|    mp_digit res_tab[PRIME_SIZE], step, kstep;
 | |
|    mp_int   b;
 | |
| 
 | |
|    /* force positive */
 | |
|    a->sign = MP_ZPOS;
 | |
| 
 | |
|    /* simple algo if a is less than the largest prime in the table */
 | |
|    if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
 | |
|       /* find which prime it is bigger than */
 | |
|       for (x = PRIME_SIZE - 2; x >= 0; x--) {
 | |
|          if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
 | |
|             if (bbs_style == 1) {
 | |
|                /* ok we found a prime smaller or
 | |
|                 * equal [so the next is larger]
 | |
|                 *
 | |
|                 * however, the prime must be
 | |
|                 * congruent to 3 mod 4
 | |
|                 */
 | |
|                if ((ltm_prime_tab[x + 1] & 3u) != 3u) {
 | |
|                   /* scan upwards for a prime congruent to 3 mod 4 */
 | |
|                   for (y = x + 1; y < PRIME_SIZE; y++) {
 | |
|                      if ((ltm_prime_tab[y] & 3u) == 3u) {
 | |
|                         mp_set(a, ltm_prime_tab[y]);
 | |
|                         return MP_OKAY;
 | |
|                      }
 | |
|                   }
 | |
|                }
 | |
|             } else {
 | |
|                mp_set(a, ltm_prime_tab[x + 1]);
 | |
|                return MP_OKAY;
 | |
|             }
 | |
|          }
 | |
|       }
 | |
|       /* at this point a maybe 1 */
 | |
|       if (mp_cmp_d(a, 1uL) == MP_EQ) {
 | |
|          mp_set(a, 2uL);
 | |
|          return MP_OKAY;
 | |
|       }
 | |
|       /* fall through to the sieve */
 | |
|    }
 | |
| 
 | |
|    /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
 | |
|    if (bbs_style == 1) {
 | |
|       kstep   = 4;
 | |
|    } else {
 | |
|       kstep   = 2;
 | |
|    }
 | |
| 
 | |
|    /* at this point we will use a combination of a sieve and Miller-Rabin */
 | |
| 
 | |
|    if (bbs_style == 1) {
 | |
|       /* if a mod 4 != 3 subtract the correct value to make it so */
 | |
|       if ((a->dp[0] & 3u) != 3u) {
 | |
|          if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
 | |
|             return err;
 | |
|          };
 | |
|       }
 | |
|    } else {
 | |
|       if (mp_iseven(a) == MP_YES) {
 | |
|          /* force odd */
 | |
|          if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
 | |
|             return err;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* generate the restable */
 | |
|    for (x = 1; x < PRIME_SIZE; x++) {
 | |
|       if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* init temp used for Miller-Rabin Testing */
 | |
|    if ((err = mp_init(&b)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       /* skip to the next non-trivially divisible candidate */
 | |
|       step = 0;
 | |
|       do {
 | |
|          /* y == 1 if any residue was zero [e.g. cannot be prime] */
 | |
|          y     =  0;
 | |
| 
 | |
|          /* increase step to next candidate */
 | |
|          step += kstep;
 | |
| 
 | |
|          /* compute the new residue without using division */
 | |
|          for (x = 1; x < PRIME_SIZE; x++) {
 | |
|             /* add the step to each residue */
 | |
|             res_tab[x] += kstep;
 | |
| 
 | |
|             /* subtract the modulus [instead of using division] */
 | |
|             if (res_tab[x] >= ltm_prime_tab[x]) {
 | |
|                res_tab[x]  -= ltm_prime_tab[x];
 | |
|             }
 | |
| 
 | |
|             /* set flag if zero */
 | |
|             if (res_tab[x] == 0u) {
 | |
|                y = 1;
 | |
|             }
 | |
|          }
 | |
|       } while ((y == 1) && (step < (((mp_digit)1 << DIGIT_BIT) - kstep)));
 | |
| 
 | |
|       /* add the step */
 | |
|       if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       /* if didn't pass sieve and step == MAX then skip test */
 | |
|       if ((y == 1) && (step >= (((mp_digit)1 << DIGIT_BIT) - kstep))) {
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if (res == MP_YES) {
 | |
|          break;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    err = MP_OKAY;
 | |
| LBL_ERR:
 | |
|    mp_clear(&b);
 | |
|    return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |