414 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			414 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Generates provable primes
 | |
|  *
 | |
|  * See http://gmail.com:8080/papers/pp.pdf for more info.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
 | |
|  */
 | |
| #include <time.h>
 | |
| #include "tommath.h"
 | |
| 
 | |
| static int   n_prime;
 | |
| static FILE *primes;
 | |
| 
 | |
| /* fast square root */
 | |
| static mp_digit i_sqrt(mp_word x)
 | |
| {
 | |
|    mp_word x1, x2;
 | |
| 
 | |
|    x2 = x;
 | |
|    do {
 | |
|       x1 = x2;
 | |
|       x2 = x1 - ((x1 * x1) - x) / (2u * x1);
 | |
|    } while (x1 != x2);
 | |
| 
 | |
|    if ((x1 * x1) > x) {
 | |
|       --x1;
 | |
|    }
 | |
| 
 | |
|    return x1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* generates a prime digit */
 | |
| static void gen_prime(void)
 | |
| {
 | |
|    mp_digit r, x, y, next;
 | |
|    FILE *out;
 | |
| 
 | |
|    out = fopen("pprime.dat", "wb");
 | |
|    if (out != NULL) {
 | |
| 
 | |
|       /* write first set of primes */
 | |
|       /* *INDENT-OFF* */
 | |
|       r = 3uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 5uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 7uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 11uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 13uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 17uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 19uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 23uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 29uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       r = 31uL; fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|       /* *INDENT-ON* */
 | |
| 
 | |
|       /* get square root, since if 'r' is composite its factors must be < than this */
 | |
|       y = i_sqrt(r);
 | |
|       next = (y + 1uL) * (y + 1uL);
 | |
| 
 | |
|       for (;;) {
 | |
|          do {
 | |
|             r += 2uL;       /* next candidate */
 | |
|             r &= MP_MASK;
 | |
|             if (r < 31uL) break;
 | |
| 
 | |
|             /* update sqrt ? */
 | |
|             if (next <= r) {
 | |
|                ++y;
 | |
|                next = (y + 1uL) * (y + 1uL);
 | |
|             }
 | |
| 
 | |
|             /* loop if divisible by 3,5,7,11,13,17,19,23,29  */
 | |
|             if ((r % 3uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 5uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 7uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 11uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 13uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 17uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 19uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 23uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
|             if ((r % 29uL) == 0uL) {
 | |
|                x = 0uL;
 | |
|                continue;
 | |
|             }
 | |
| 
 | |
|             /* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
 | |
|             for (x = 30uL; x <= y; x += 30uL) {
 | |
|                if ((r % (x + 1uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 7uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 11uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 13uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 17uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 19uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 23uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|                if ((r % (x + 29uL)) == 0uL) {
 | |
|                   x = 0uL;
 | |
|                   break;
 | |
|                }
 | |
|             }
 | |
|          } while (x == 0uL);
 | |
|          if (r > 31uL) {
 | |
|             fwrite(&r, 1uL, sizeof(mp_digit), out);
 | |
|             printf("%9lu\r", r);
 | |
|             fflush(stdout);
 | |
|          }
 | |
|          if (r < 31uL) break;
 | |
|       }
 | |
| 
 | |
|       fclose(out);
 | |
|    }
 | |
| }
 | |
| 
 | |
| static void load_tab(void)
 | |
| {
 | |
|    primes = fopen("pprime.dat", "rb");
 | |
|    if (primes == NULL) {
 | |
|       gen_prime();
 | |
|       primes = fopen("pprime.dat", "rb");
 | |
|    }
 | |
|    fseek(primes, 0L, SEEK_END);
 | |
|    n_prime = ftell(primes) / sizeof(mp_digit);
 | |
| }
 | |
| 
 | |
| static mp_digit prime_digit(void)
 | |
| {
 | |
|    int n;
 | |
|    mp_digit d;
 | |
| 
 | |
|    n = abs(rand()) % n_prime;
 | |
|    fseek(primes, n * sizeof(mp_digit), SEEK_SET);
 | |
|    fread(&d, 1uL, sizeof(mp_digit), primes);
 | |
|    return d;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* makes a prime of at least k bits */
 | |
| static int pprime(int k, int li, mp_int *p, mp_int *q)
 | |
| {
 | |
|    mp_int  a, b, c, n, x, y, z, v;
 | |
|    int     res, ii;
 | |
|    static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
 | |
| 
 | |
|    /* single digit ? */
 | |
|    if (k <= (int) DIGIT_BIT) {
 | |
|       mp_set(p, prime_digit());
 | |
|       return MP_OKAY;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&c)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&v)) != MP_OKAY) {
 | |
|       goto LBL_C;
 | |
|    }
 | |
| 
 | |
|    /* product of first 50 primes */
 | |
|    if ((res =
 | |
|            mp_read_radix(&v,
 | |
|                          "19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
 | |
|                          10)) != MP_OKAY) {
 | |
|       goto LBL_V;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&a)) != MP_OKAY) {
 | |
|       goto LBL_V;
 | |
|    }
 | |
| 
 | |
|    /* set the prime */
 | |
|    mp_set(&a, prime_digit());
 | |
| 
 | |
|    if ((res = mp_init(&b)) != MP_OKAY) {
 | |
|       goto LBL_A;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&n)) != MP_OKAY) {
 | |
|       goto LBL_B;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&x)) != MP_OKAY) {
 | |
|       goto LBL_N;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&y)) != MP_OKAY) {
 | |
|       goto LBL_X;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_init(&z)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|    }
 | |
| 
 | |
|    /* now loop making the single digit */
 | |
|    while (mp_count_bits(&a) < k) {
 | |
|       fprintf(stderr, "prime has %4d bits left\r", k - mp_count_bits(&a));
 | |
|       fflush(stderr);
 | |
| top:
 | |
|       mp_set(&b, prime_digit());
 | |
| 
 | |
|       /* now compute z = a * b * 2 */
 | |
|       if ((res = mp_mul(&a, &b, &z)) != MP_OKAY) {   /* z = a * b */
 | |
|          goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       if ((res = mp_copy(&z, &c)) != MP_OKAY) {   /* c = a * b */
 | |
|          goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       if ((res = mp_mul_2(&z, &z)) != MP_OKAY) {  /* z = 2 * a * b */
 | |
|          goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       /* n = z + 1 */
 | |
|       if ((res = mp_add_d(&z, 1uL, &n)) != MP_OKAY) {  /* n = z + 1 */
 | |
|          goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       /* check (n, v) == 1 */
 | |
|       if ((res = mp_gcd(&n, &v, &y)) != MP_OKAY) {   /* y = (n, v) */
 | |
|          goto LBL_Z;
 | |
|       }
 | |
| 
 | |
|       if (mp_cmp_d(&y, 1uL) != MP_EQ)
 | |
|          goto top;
 | |
| 
 | |
|       /* now try base x=bases[ii]  */
 | |
|       for (ii = 0; ii < li; ii++) {
 | |
|          mp_set(&x, bases[ii]);
 | |
| 
 | |
|          /* compute x^a mod n */
 | |
|          if ((res = mp_exptmod(&x, &a, &n, &y)) != MP_OKAY) {  /* y = x^a mod n */
 | |
|             goto LBL_Z;
 | |
|          }
 | |
| 
 | |
|          /* if y == 1 loop */
 | |
|          if (mp_cmp_d(&y, 1uL) == MP_EQ)
 | |
|             continue;
 | |
| 
 | |
|          /* now x^2a mod n */
 | |
|          if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) {    /* y = x^2a mod n */
 | |
|             goto LBL_Z;
 | |
|          }
 | |
| 
 | |
|          if (mp_cmp_d(&y, 1uL) == MP_EQ)
 | |
|             continue;
 | |
| 
 | |
|          /* compute x^b mod n */
 | |
|          if ((res = mp_exptmod(&x, &b, &n, &y)) != MP_OKAY) {  /* y = x^b mod n */
 | |
|             goto LBL_Z;
 | |
|          }
 | |
| 
 | |
|          /* if y == 1 loop */
 | |
|          if (mp_cmp_d(&y, 1uL) == MP_EQ)
 | |
|             continue;
 | |
| 
 | |
|          /* now x^2b mod n */
 | |
|          if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) {    /* y = x^2b mod n */
 | |
|             goto LBL_Z;
 | |
|          }
 | |
| 
 | |
|          if (mp_cmp_d(&y, 1uL) == MP_EQ)
 | |
|             continue;
 | |
| 
 | |
|          /* compute x^c mod n == x^ab mod n */
 | |
|          if ((res = mp_exptmod(&x, &c, &n, &y)) != MP_OKAY) {  /* y = x^ab mod n */
 | |
|             goto LBL_Z;
 | |
|          }
 | |
| 
 | |
|          /* if y == 1 loop */
 | |
|          if (mp_cmp_d(&y, 1uL) == MP_EQ)
 | |
|             continue;
 | |
| 
 | |
|          /* now compute (x^c mod n)^2 */
 | |
|          if ((res = mp_sqrmod(&y, &n, &y)) != MP_OKAY) {    /* y = x^2ab mod n */
 | |
|             goto LBL_Z;
 | |
|          }
 | |
| 
 | |
|          /* y should be 1 */
 | |
|          if (mp_cmp_d(&y, 1uL) != MP_EQ)
 | |
|             continue;
 | |
|          break;
 | |
|       }
 | |
| 
 | |
|       /* no bases worked? */
 | |
|       if (ii == li)
 | |
|          goto top;
 | |
| 
 | |
|       {
 | |
|          char buf[4096];
 | |
| 
 | |
|          mp_toradix(&n, buf, 10);
 | |
|          printf("Certificate of primality for:\n%s\n\n", buf);
 | |
|          mp_toradix(&a, buf, 10);
 | |
|          printf("A == \n%s\n\n", buf);
 | |
|          mp_toradix(&b, buf, 10);
 | |
|          printf("B == \n%s\n\nG == %lu\n", buf, bases[ii]);
 | |
|          printf("----------------------------------------------------------------\n");
 | |
|       }
 | |
| 
 | |
|       /* a = n */
 | |
|       mp_copy(&n, &a);
 | |
|    }
 | |
| 
 | |
|    /* get q to be the order of the large prime subgroup */
 | |
|    mp_sub_d(&n, 1uL, q);
 | |
|    mp_div_2(q, q);
 | |
|    mp_div(q, &b, q, NULL);
 | |
| 
 | |
|    mp_exch(&n, p);
 | |
| 
 | |
|    res = MP_OKAY;
 | |
| LBL_Z:
 | |
|    mp_clear(&z);
 | |
| LBL_Y:
 | |
|    mp_clear(&y);
 | |
| LBL_X:
 | |
|    mp_clear(&x);
 | |
| LBL_N:
 | |
|    mp_clear(&n);
 | |
| LBL_B:
 | |
|    mp_clear(&b);
 | |
| LBL_A:
 | |
|    mp_clear(&a);
 | |
| LBL_V:
 | |
|    mp_clear(&v);
 | |
| LBL_C:
 | |
|    mp_clear(&c);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|    mp_int  p, q;
 | |
|    char    buf[4096];
 | |
|    int     k, li;
 | |
|    clock_t t1;
 | |
| 
 | |
|    srand(time(NULL));
 | |
|    load_tab();
 | |
| 
 | |
|    printf("Enter # of bits: \n");
 | |
|    fgets(buf, sizeof(buf), stdin);
 | |
|    sscanf(buf, "%d", &k);
 | |
| 
 | |
|    printf("Enter number of bases to try (1 to 8):\n");
 | |
|    fgets(buf, sizeof(buf), stdin);
 | |
|    sscanf(buf, "%d", &li);
 | |
| 
 | |
| 
 | |
|    mp_init(&p);
 | |
|    mp_init(&q);
 | |
| 
 | |
|    t1 = clock();
 | |
|    pprime(k, li, &p, &q);
 | |
|    t1 = clock() - t1;
 | |
| 
 | |
|    printf("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits(&p));
 | |
| 
 | |
|    mp_toradix(&p, buf, 10);
 | |
|    printf("P == %s\n", buf);
 | |
|    mp_toradix(&q, buf, 10);
 | |
|    printf("Q == %s\n", buf);
 | |
| 
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |