168 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_KARATSUBA_MUL_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* c = |a| * |b| using Karatsuba Multiplication using 
 | |
|  * three half size multiplications
 | |
|  *
 | |
|  * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
 | |
|  * let n represent half of the number of digits in 
 | |
|  * the min(a,b)
 | |
|  *
 | |
|  * a = a1 * B**n + a0
 | |
|  * b = b1 * B**n + b0
 | |
|  *
 | |
|  * Then, a * b => 
 | |
|    a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 | |
|  *
 | |
|  * Note that a1b1 and a0b0 are used twice and only need to be 
 | |
|  * computed once.  So in total three half size (half # of 
 | |
|  * digit) multiplications are performed, a0b0, a1b1 and 
 | |
|  * (a1+b1)(a0+b0)
 | |
|  *
 | |
|  * Note that a multiplication of half the digits requires
 | |
|  * 1/4th the number of single precision multiplications so in 
 | |
|  * total after one call 25% of the single precision multiplications 
 | |
|  * are saved.  Note also that the call to mp_mul can end up back 
 | |
|  * in this function if the a0, a1, b0, or b1 are above the threshold.  
 | |
|  * This is known as divide-and-conquer and leads to the famous 
 | |
|  * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
 | |
|  * the standard O(N**2) that the baseline/comba methods use.  
 | |
|  * Generally though the overhead of this method doesn't pay off 
 | |
|  * until a certain size (N ~ 80) is reached.
 | |
|  */
 | |
| int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
 | |
|   int     B, err;
 | |
| 
 | |
|   /* default the return code to an error */
 | |
|   err = MP_MEM;
 | |
| 
 | |
|   /* min # of digits */
 | |
|   B = MIN (a->used, b->used);
 | |
| 
 | |
|   /* now divide in two */
 | |
|   B = B >> 1;
 | |
| 
 | |
|   /* init copy all the temps */
 | |
|   if (mp_init_size (&x0, B) != MP_OKAY)
 | |
|     goto ERR;
 | |
|   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | |
|     goto X0;
 | |
|   if (mp_init_size (&y0, B) != MP_OKAY)
 | |
|     goto X1;
 | |
|   if (mp_init_size (&y1, b->used - B) != MP_OKAY)
 | |
|     goto Y0;
 | |
| 
 | |
|   /* init temps */
 | |
|   if (mp_init_size (&t1, B * 2) != MP_OKAY)
 | |
|     goto Y1;
 | |
|   if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
 | |
|     goto T1;
 | |
|   if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
 | |
|     goto X0Y0;
 | |
| 
 | |
|   /* now shift the digits */
 | |
|   x0.used = y0.used = B;
 | |
|   x1.used = a->used - B;
 | |
|   y1.used = b->used - B;
 | |
| 
 | |
|   {
 | |
|     int x;
 | |
|     mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
 | |
| 
 | |
|     /* we copy the digits directly instead of using higher level functions
 | |
|      * since we also need to shift the digits
 | |
|      */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     tmpx = x0.dp;
 | |
|     tmpy = y0.dp;
 | |
|     for (x = 0; x < B; x++) {
 | |
|       *tmpx++ = *tmpa++;
 | |
|       *tmpy++ = *tmpb++;
 | |
|     }
 | |
| 
 | |
|     tmpx = x1.dp;
 | |
|     for (x = B; x < a->used; x++) {
 | |
|       *tmpx++ = *tmpa++;
 | |
|     }
 | |
| 
 | |
|     tmpy = y1.dp;
 | |
|     for (x = B; x < b->used; x++) {
 | |
|       *tmpy++ = *tmpb++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* only need to clamp the lower words since by definition the 
 | |
|    * upper words x1/y1 must have a known number of digits
 | |
|    */
 | |
|   mp_clamp (&x0);
 | |
|   mp_clamp (&y0);
 | |
| 
 | |
|   /* now calc the products x0y0 and x1y1 */
 | |
|   /* after this x0 is no longer required, free temp [x0==t2]! */
 | |
|   if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
 | |
|     goto X1Y1;          /* x0y0 = x0*y0 */
 | |
|   if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
 | |
|     goto X1Y1;          /* x1y1 = x1*y1 */
 | |
| 
 | |
|   /* now calc x1+x0 and y1+y0 */
 | |
|   if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x1 - x0 */
 | |
|   if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
 | |
|     goto X1Y1;          /* t2 = y1 - y0 */
 | |
|   if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */
 | |
| 
 | |
|   /* add x0y0 */
 | |
|   if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
 | |
|     goto X1Y1;          /* t2 = x0y0 + x1y1 */
 | |
|   if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
 | |
| 
 | |
|   /* shift by B */
 | |
|   if (mp_lshd (&t1, B) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
 | |
|   if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
 | |
|     goto X1Y1;          /* x1y1 = x1y1 << 2*B */
 | |
| 
 | |
|   if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + t1 */
 | |
|   if (mp_add (&t1, &x1y1, c) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
 | |
| 
 | |
|   /* Algorithm succeeded set the return code to MP_OKAY */
 | |
|   err = MP_OKAY;
 | |
| 
 | |
| X1Y1:mp_clear (&x1y1);
 | |
| X0Y0:mp_clear (&x0y0);
 | |
| T1:mp_clear (&t1);
 | |
| Y1:mp_clear (&y1);
 | |
| Y0:mp_clear (&y0);
 | |
| X1:mp_clear (&x1);
 | |
| X0:mp_clear (&x0);
 | |
| ERR:
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |