133 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath.h>
 | |
| #ifdef BN_MP_N_ROOT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* find the n'th root of an integer 
 | |
|  *
 | |
|  * Result found such that (c)**b <= a and (c+1)**b > a 
 | |
|  *
 | |
|  * This algorithm uses Newton's approximation 
 | |
|  * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
 | |
|  * which will find the root in log(N) time where 
 | |
|  * each step involves a fair bit.  This is not meant to 
 | |
|  * find huge roots [square and cube, etc].
 | |
|  */
 | |
| int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_int  t1, t2, t3;
 | |
|   int     res, neg;
 | |
| 
 | |
|   /* input must be positive if b is even */
 | |
|   if ((b & 1) == 0 && a->sign == MP_NEG) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto LBL_T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t3)) != MP_OKAY) {
 | |
|     goto LBL_T2;
 | |
|   }
 | |
| 
 | |
|   /* if a is negative fudge the sign but keep track */
 | |
|   neg     = a->sign;
 | |
|   a->sign = MP_ZPOS;
 | |
| 
 | |
|   /* t2 = 2 */
 | |
|   mp_set (&t2, 2);
 | |
| 
 | |
|   do {
 | |
|     /* t1 = t2 */
 | |
|     if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
 | |
|     
 | |
|     /* t3 = t1**(b-1) */
 | |
|     if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {   
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* numerator */
 | |
|     /* t2 = t1**b */
 | |
|     if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {    
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* t2 = t1**b - a */
 | |
|     if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {  
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* denominator */
 | |
|     /* t3 = t1**(b-1) * b  */
 | |
|     if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {    
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* t3 = (t1**b - a)/(b * t1**(b-1)) */
 | |
|     if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {  
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
|   }  while (mp_cmp (&t1, &t2) != MP_EQ);
 | |
| 
 | |
|   /* result can be off by a few so check */
 | |
|   for (;;) {
 | |
|     if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     if (mp_cmp (&t2, a) == MP_GT) {
 | |
|       if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset the sign of a first */
 | |
|   a->sign = neg;
 | |
| 
 | |
|   /* set the result */
 | |
|   mp_exch (&t1, c);
 | |
| 
 | |
|   /* set the sign of the result */
 | |
|   c->sign = neg;
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_T3:mp_clear (&t3);
 | |
| LBL_T2:mp_clear (&t2);
 | |
| LBL_T1:mp_clear (&t1);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 |