110 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			110 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "tommath_private.h"
 | |
| #ifdef BN_MP_EXPTMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * SPDX-License-Identifier: Unlicense
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* this is a shell function that calls either the normal or Montgomery
 | |
|  * exptmod functions.  Originally the call to the montgomery code was
 | |
|  * embedded in the normal function but that wasted alot of stack space
 | |
|  * for nothing (since 99% of the time the Montgomery code would be called)
 | |
|  */
 | |
| int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y)
 | |
| {
 | |
|    int dr;
 | |
| 
 | |
|    /* modulus P must be positive */
 | |
|    if (P->sign == MP_NEG) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* if exponent X is negative we have to recurse */
 | |
|    if (X->sign == MP_NEG) {
 | |
| #ifdef BN_MP_INVMOD_C
 | |
|       mp_int tmpG, tmpX;
 | |
|       int err;
 | |
| 
 | |
|       /* first compute 1/G mod P */
 | |
|       if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|       if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | |
|          mp_clear(&tmpG);
 | |
|          return err;
 | |
|       }
 | |
| 
 | |
|       /* now get |X| */
 | |
|       if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | |
|          mp_clear(&tmpG);
 | |
|          return err;
 | |
|       }
 | |
|       if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | |
|          mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|          return err;
 | |
|       }
 | |
| 
 | |
|       /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | |
|       err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | |
|       mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|       return err;
 | |
| #else
 | |
|       /* no invmod */
 | |
|       return MP_VAL;
 | |
| #endif
 | |
|    }
 | |
| 
 | |
|    /* modified diminished radix reduction */
 | |
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
 | |
|    if (mp_reduce_is_2k_l(P) == MP_YES) {
 | |
|       return s_mp_exptmod(G, X, P, Y, 1);
 | |
|    }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_DR_IS_MODULUS_C
 | |
|    /* is it a DR modulus? */
 | |
|    dr = mp_dr_is_modulus(P);
 | |
| #else
 | |
|    /* default to no */
 | |
|    dr = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_REDUCE_IS_2K_C
 | |
|    /* if not, is it a unrestricted DR modulus? */
 | |
|    if (dr == 0) {
 | |
|       dr = mp_reduce_is_2k(P) << 1;
 | |
|    }
 | |
| #endif
 | |
| 
 | |
|    /* if the modulus is odd or dr != 0 use the montgomery method */
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|    if ((mp_isodd(P) == MP_YES) || (dr !=  0)) {
 | |
|       return mp_exptmod_fast(G, X, P, Y, dr);
 | |
|    } else {
 | |
| #endif
 | |
| #ifdef BN_S_MP_EXPTMOD_C
 | |
|       /* otherwise use the generic Barrett reduction technique */
 | |
|       return s_mp_exptmod(G, X, P, Y, 0);
 | |
| #else
 | |
|       /* no exptmod for evens */
 | |
|       return MP_VAL;
 | |
| #endif
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|    }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |