108 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include <tommath_private.h>
 | 
						|
#ifdef BN_MP_GCD_C
 | 
						|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 | 
						|
 *
 | 
						|
 * LibTomMath is a library that provides multiple-precision
 | 
						|
 * integer arithmetic as well as number theoretic functionality.
 | 
						|
 *
 | 
						|
 * The library was designed directly after the MPI library by
 | 
						|
 * Michael Fromberger but has been written from scratch with
 | 
						|
 * additional optimizations in place.
 | 
						|
 *
 | 
						|
 * The library is free for all purposes without any express
 | 
						|
 * guarantee it works.
 | 
						|
 *
 | 
						|
 * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | 
						|
 */
 | 
						|
 | 
						|
/* Greatest Common Divisor using the binary method */
 | 
						|
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c)
 | 
						|
{
 | 
						|
   mp_int  u, v;
 | 
						|
   int     k, u_lsb, v_lsb, res;
 | 
						|
 | 
						|
   /* either zero than gcd is the largest */
 | 
						|
   if (mp_iszero(a) == MP_YES) {
 | 
						|
      return mp_abs(b, c);
 | 
						|
   }
 | 
						|
   if (mp_iszero(b) == MP_YES) {
 | 
						|
      return mp_abs(a, c);
 | 
						|
   }
 | 
						|
 | 
						|
   /* get copies of a and b we can modify */
 | 
						|
   if ((res = mp_init_copy(&u, a)) != MP_OKAY) {
 | 
						|
      return res;
 | 
						|
   }
 | 
						|
 | 
						|
   if ((res = mp_init_copy(&v, b)) != MP_OKAY) {
 | 
						|
      goto LBL_U;
 | 
						|
   }
 | 
						|
 | 
						|
   /* must be positive for the remainder of the algorithm */
 | 
						|
   u.sign = v.sign = MP_ZPOS;
 | 
						|
 | 
						|
   /* B1.  Find the common power of two for u and v */
 | 
						|
   u_lsb = mp_cnt_lsb(&u);
 | 
						|
   v_lsb = mp_cnt_lsb(&v);
 | 
						|
   k     = MIN(u_lsb, v_lsb);
 | 
						|
 | 
						|
   if (k > 0) {
 | 
						|
      /* divide the power of two out */
 | 
						|
      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
 | 
						|
         goto LBL_V;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
 | 
						|
         goto LBL_V;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* divide any remaining factors of two out */
 | 
						|
   if (u_lsb != k) {
 | 
						|
      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
 | 
						|
         goto LBL_V;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   if (v_lsb != k) {
 | 
						|
      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
 | 
						|
         goto LBL_V;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   while (mp_iszero(&v) == MP_NO) {
 | 
						|
      /* make sure v is the largest */
 | 
						|
      if (mp_cmp_mag(&u, &v) == MP_GT) {
 | 
						|
         /* swap u and v to make sure v is >= u */
 | 
						|
         mp_exch(&u, &v);
 | 
						|
      }
 | 
						|
 | 
						|
      /* subtract smallest from largest */
 | 
						|
      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
 | 
						|
         goto LBL_V;
 | 
						|
      }
 | 
						|
 | 
						|
      /* Divide out all factors of two */
 | 
						|
      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
 | 
						|
         goto LBL_V;
 | 
						|
      }
 | 
						|
   }
 | 
						|
 | 
						|
   /* multiply by 2**k which we divided out at the beginning */
 | 
						|
   if ((res = mp_mul_2d(&u, k, c)) != MP_OKAY) {
 | 
						|
      goto LBL_V;
 | 
						|
   }
 | 
						|
   c->sign = MP_ZPOS;
 | 
						|
   res = MP_OKAY;
 | 
						|
LBL_V:
 | 
						|
   mp_clear(&u);
 | 
						|
LBL_U:
 | 
						|
   mp_clear(&v);
 | 
						|
   return res;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* ref:         $Format:%D$ */
 | 
						|
/* git commit:  $Format:%H$ */
 | 
						|
/* commit time: $Format:%ai$ */
 |