177 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_INVMOD_SLOW_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* hac 14.61, pp608 */
 | |
| int mp_invmod_slow(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|   mp_int  x, y, u, v, A, B, C, D;
 | |
|   int     res;
 | |
| 
 | |
|   /* b cannot be negative */
 | |
|   if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* init temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v,
 | |
|                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x = a, y = b */
 | |
|   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy(b, &y)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 2. [modified] if x,y are both even then return an error! */
 | |
|   if ((mp_iseven(&x) == MP_YES) && (mp_iseven(&y) == MP_YES)) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy(&x, &u)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy(&y, &v)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   mp_set(&A, 1);
 | |
|   mp_set(&D, 1);
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven(&u) == MP_YES) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2(&u, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 4.2 if A or B is odd then */
 | |
|     if ((mp_isodd(&A) == MP_YES) || (mp_isodd(&B) == MP_YES)) {
 | |
|       /* A = (A+y)/2, B = (B-x)/2 */
 | |
|       if ((res = mp_add(&A, &y, &A)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if ((res = mp_sub(&B, &x, &B)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* A = A/2, B = B/2 */
 | |
|     if ((res = mp_div_2(&A, &A)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2(&B, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven(&v) == MP_YES) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2(&v, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 5.2 if C or D is odd then */
 | |
|     if ((mp_isodd(&C) == MP_YES) || (mp_isodd(&D) == MP_YES)) {
 | |
|       /* C = (C+y)/2, D = (D-x)/2 */
 | |
|       if ((res = mp_add(&C, &y, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if ((res = mp_sub(&D, &x, &D)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* C = C/2, D = D/2 */
 | |
|     if ((res = mp_div_2(&C, &C)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2(&D, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp(&u, &v) != MP_LT) {
 | |
|     /* u = u - v, A = A - C, B = B - D */
 | |
|     if ((res = mp_sub(&u, &v, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub(&A, &C, &A)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub(&B, &D, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, C = C - A, D = D - B */
 | |
|     if ((res = mp_sub(&v, &u, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub(&C, &A, &C)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub(&D, &B, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero(&u) == MP_NO)
 | |
|     goto top;
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d(&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* if its too low */
 | |
|   while (mp_cmp_d(&C, 0) == MP_LT) {
 | |
|       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* too big */
 | |
|   while (mp_cmp_mag(&C, b) != MP_LT) {
 | |
|       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* C is now the inverse */
 | |
|   mp_exch(&C, c);
 | |
|   res = MP_OKAY;
 | |
| LBL_ERR:
 | |
|   mp_clear_multi(&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |