120 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_JACOBI_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes the jacobi c = (a | n) (or Legendre if n is prime)
 | |
|  * HAC pp. 73 Algorithm 2.149
 | |
|  * HAC is wrong here, as the special case of (0 | 1) is not
 | |
|  * handled correctly.
 | |
|  */
 | |
| int mp_jacobi(mp_int *a, mp_int *n, int *c)
 | |
| {
 | |
|   mp_int  a1, p1;
 | |
|   int     k, s, r, res;
 | |
|   mp_digit residue;
 | |
| 
 | |
|   /* if a < 0 return MP_VAL */
 | |
|   if (mp_isneg(a) == MP_YES) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if n <= 0 return MP_VAL */
 | |
|   if (mp_cmp_d(n, 0) != MP_GT) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* step 1. handle case of a == 0 */
 | |
|   if (mp_iszero(a) == MP_YES) {
 | |
|      /* special case of a == 0 and n == 1 */
 | |
|      if (mp_cmp_d(n, 1) == MP_EQ) {
 | |
|        *c = 1;
 | |
|      } else {
 | |
|        *c = 0;
 | |
|      }
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* step 2.  if a == 1, return 1 */
 | |
|   if (mp_cmp_d(a, 1) == MP_EQ) {
 | |
|     *c = 1;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* default */
 | |
|   s = 0;
 | |
| 
 | |
|   /* step 3.  write a = a1 * 2**k  */
 | |
|   if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init(&p1)) != MP_OKAY) {
 | |
|     goto LBL_A1;
 | |
|   }
 | |
| 
 | |
|   /* divide out larger power of two */
 | |
|   k = mp_cnt_lsb(&a1);
 | |
|   if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
 | |
|      goto LBL_P1;
 | |
|   }
 | |
| 
 | |
|   /* step 4.  if e is even set s=1 */
 | |
|   if ((k & 1) == 0) {
 | |
|     s = 1;
 | |
|   } else {
 | |
|     /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
 | |
|     residue = n->dp[0] & 7;
 | |
| 
 | |
|     if ((residue == 1) || (residue == 7)) {
 | |
|       s = 1;
 | |
|     } else if ((residue == 3) || (residue == 5)) {
 | |
|       s = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
 | |
|   if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
 | |
|     s = -s;
 | |
|   }
 | |
| 
 | |
|   /* if a1 == 1 we're done */
 | |
|   if (mp_cmp_d(&a1, 1) == MP_EQ) {
 | |
|     *c = s;
 | |
|   } else {
 | |
|     /* n1 = n mod a1 */
 | |
|     if ((res = mp_mod(n, &a1, &p1)) != MP_OKAY) {
 | |
|       goto LBL_P1;
 | |
|     }
 | |
|     if ((res = mp_jacobi(&p1, &a1, &r)) != MP_OKAY) {
 | |
|       goto LBL_P1;
 | |
|     }
 | |
|     *c = s * r;
 | |
|   }
 | |
| 
 | |
|   /* done */
 | |
|   res = MP_OKAY;
 | |
| LBL_P1:
 | |
|   mp_clear(&p1);
 | |
| LBL_A1:
 | |
|   mp_clear(&a1);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* ref:         $Format:%D$ */
 | |
| /* git commit:  $Format:%H$ */
 | |
| /* commit time: $Format:%ai$ */
 |