9525 lines
		
	
	
		
			223 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			9525 lines
		
	
	
		
			223 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Start: bn_error.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_ERROR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| static const struct {
 | |
|      int code;
 | |
|      char *msg;
 | |
| } msgs[] = {
 | |
|      { MP_OKAY, "Successful" },
 | |
|      { MP_MEM,  "Out of heap" },
 | |
|      { MP_VAL,  "Value out of range" }
 | |
| };
 | |
| 
 | |
| /* return a char * string for a given code */
 | |
| char *mp_error_to_string(int code)
 | |
| {
 | |
|    int x;
 | |
| 
 | |
|    /* scan the lookup table for the given message */
 | |
|    for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
 | |
|        if (msgs[x].code == code) {
 | |
|           return msgs[x].msg;
 | |
|        }
 | |
|    }
 | |
| 
 | |
|    /* generic reply for invalid code */
 | |
|    return "Invalid error code";
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_error.c */
 | |
| 
 | |
| /* Start: bn_fast_mp_invmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_FAST_MP_INVMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes the modular inverse via binary extended euclidean algorithm,
 | |
|  * that is c = 1/a mod b
 | |
|  *
 | |
|  * Based on slow invmod except this is optimized for the case where b is
 | |
|  * odd as per HAC Note 14.64 on pp. 610
 | |
|  */
 | |
| int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x, y, u, v, B, D;
 | |
|   int     res, neg;
 | |
| 
 | |
|   /* 2. [modified] b must be odd   */
 | |
|   if (mp_iseven (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* init all our temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x == modulus, y == value to invert */
 | |
|   if ((res = mp_copy (b, &x)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* we need y = |a| */
 | |
|   if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   mp_set (&D, 1);
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven (&u) == 1) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 4.2 if B is odd then */
 | |
|     if (mp_isodd (&B) == 1) {
 | |
|       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | |
|         goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* B = B/2 */
 | |
|     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven (&v) == 1) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 5.2 if D is odd then */
 | |
|     if (mp_isodd (&D) == 1) {
 | |
|       /* D = (D-x)/2 */
 | |
|       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | |
|         goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* D = D/2 */
 | |
|     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp (&u, &v) != MP_LT) {
 | |
|     /* u = u - v, B = B - D */
 | |
|     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, D = D - B */
 | |
|     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero (&u) == 0) {
 | |
|     goto top;
 | |
|   }
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* b is now the inverse */
 | |
|   neg = a->sign;
 | |
|   while (D.sign == MP_NEG) {
 | |
|     if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
|   mp_exch (&D, c);
 | |
|   c->sign = neg;
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_fast_mp_invmod.c */
 | |
| 
 | |
| /* Start: bn_fast_mp_montgomery_reduce.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction
 | |
|  *
 | |
|  * This is an optimized implementation of montgomery_reduce
 | |
|  * which uses the comba method to quickly calculate the columns of the
 | |
|  * reduction.
 | |
|  *
 | |
|  * Based on Algorithm 14.32 on pp.601 of HAC.
 | |
| */
 | |
| int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 | |
| {
 | |
|   int     ix, res, olduse;
 | |
|   mp_word W[MP_WARRAY];
 | |
| 
 | |
|   /* get old used count */
 | |
|   olduse = x->used;
 | |
| 
 | |
|   /* grow a as required */
 | |
|   if (x->alloc < n->used + 1) {
 | |
|     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* first we have to get the digits of the input into
 | |
|    * an array of double precision words W[...]
 | |
|    */
 | |
|   {
 | |
|     register mp_word *_W;
 | |
|     register mp_digit *tmpx;
 | |
| 
 | |
|     /* alias for the W[] array */
 | |
|     _W   = W;
 | |
| 
 | |
|     /* alias for the digits of  x*/
 | |
|     tmpx = x->dp;
 | |
| 
 | |
|     /* copy the digits of a into W[0..a->used-1] */
 | |
|     for (ix = 0; ix < x->used; ix++) {
 | |
|       *_W++ = *tmpx++;
 | |
|     }
 | |
| 
 | |
|     /* zero the high words of W[a->used..m->used*2] */
 | |
|     for (; ix < n->used * 2 + 1; ix++) {
 | |
|       *_W++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* now we proceed to zero successive digits
 | |
|    * from the least significant upwards
 | |
|    */
 | |
|   for (ix = 0; ix < n->used; ix++) {
 | |
|     /* mu = ai * m' mod b
 | |
|      *
 | |
|      * We avoid a double precision multiplication (which isn't required)
 | |
|      * by casting the value down to a mp_digit.  Note this requires
 | |
|      * that W[ix-1] have  the carry cleared (see after the inner loop)
 | |
|      */
 | |
|     register mp_digit mu;
 | |
|     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
 | |
| 
 | |
|     /* a = a + mu * m * b**i
 | |
|      *
 | |
|      * This is computed in place and on the fly.  The multiplication
 | |
|      * by b**i is handled by offseting which columns the results
 | |
|      * are added to.
 | |
|      *
 | |
|      * Note the comba method normally doesn't handle carries in the
 | |
|      * inner loop In this case we fix the carry from the previous
 | |
|      * column since the Montgomery reduction requires digits of the
 | |
|      * result (so far) [see above] to work.  This is
 | |
|      * handled by fixing up one carry after the inner loop.  The
 | |
|      * carry fixups are done in order so after these loops the
 | |
|      * first m->used words of W[] have the carries fixed
 | |
|      */
 | |
|     {
 | |
|       register int iy;
 | |
|       register mp_digit *tmpn;
 | |
|       register mp_word *_W;
 | |
| 
 | |
|       /* alias for the digits of the modulus */
 | |
|       tmpn = n->dp;
 | |
| 
 | |
|       /* Alias for the columns set by an offset of ix */
 | |
|       _W = W + ix;
 | |
| 
 | |
|       /* inner loop */
 | |
|       for (iy = 0; iy < n->used; iy++) {
 | |
|           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* now fix carry for next digit, W[ix+1] */
 | |
|     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* now we have to propagate the carries and
 | |
|    * shift the words downward [all those least
 | |
|    * significant digits we zeroed].
 | |
|    */
 | |
|   {
 | |
|     register mp_digit *tmpx;
 | |
|     register mp_word *_W, *_W1;
 | |
| 
 | |
|     /* nox fix rest of carries */
 | |
| 
 | |
|     /* alias for current word */
 | |
|     _W1 = W + ix;
 | |
| 
 | |
|     /* alias for next word, where the carry goes */
 | |
|     _W = W + ++ix;
 | |
| 
 | |
|     for (; ix <= n->used * 2 + 1; ix++) {
 | |
|       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
 | |
|     }
 | |
| 
 | |
|     /* copy out, A = A/b**n
 | |
|      *
 | |
|      * The result is A/b**n but instead of converting from an
 | |
|      * array of mp_word to mp_digit than calling mp_rshd
 | |
|      * we just copy them in the right order
 | |
|      */
 | |
| 
 | |
|     /* alias for destination word */
 | |
|     tmpx = x->dp;
 | |
| 
 | |
|     /* alias for shifted double precision result */
 | |
|     _W = W + n->used;
 | |
| 
 | |
|     for (ix = 0; ix < n->used + 1; ix++) {
 | |
|       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* zero oldused digits, if the input a was larger than
 | |
|      * m->used+1 we'll have to clear the digits
 | |
|      */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpx++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set the max used and clamp */
 | |
|   x->used = n->used + 1;
 | |
|   mp_clamp (x);
 | |
| 
 | |
|   /* if A >= m then A = A - m */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     return s_mp_sub (x, n, x);
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_fast_mp_montgomery_reduce.c */
 | |
| 
 | |
| /* Start: bn_fast_s_mp_mul_digs.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_FAST_S_MP_MUL_DIGS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Fast (comba) multiplier
 | |
|  *
 | |
|  * This is the fast column-array [comba] multiplier.  It is
 | |
|  * designed to compute the columns of the product first
 | |
|  * then handle the carries afterwards.  This has the effect
 | |
|  * of making the nested loops that compute the columns very
 | |
|  * simple and schedulable on super-scalar processors.
 | |
|  *
 | |
|  * This has been modified to produce a variable number of
 | |
|  * digits of output so if say only a half-product is required
 | |
|  * you don't have to compute the upper half (a feature
 | |
|  * required for fast Barrett reduction).
 | |
|  *
 | |
|  * Based on Algorithm 14.12 on pp.595 of HAC.
 | |
|  *
 | |
|  */
 | |
| int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   int     olduse, res, pa, ix, iz;
 | |
|   mp_digit W[MP_WARRAY];
 | |
|   register mp_word  _W;
 | |
| 
 | |
|   /* grow the destination as required */
 | |
|   if (c->alloc < digs) {
 | |
|     if ((res = mp_grow (c, digs)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* number of output digits to produce */
 | |
|   pa = MIN(digs, a->used + b->used);
 | |
| 
 | |
|   /* clear the carry */
 | |
|   _W = 0;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|       int      tx, ty;
 | |
|       int      iy;
 | |
|       mp_digit *tmpx, *tmpy;
 | |
| 
 | |
|       /* get offsets into the two bignums */
 | |
|       ty = MIN(b->used-1, ix);
 | |
|       tx = ix - ty;
 | |
| 
 | |
|       /* setup temp aliases */
 | |
|       tmpx = a->dp + tx;
 | |
|       tmpy = b->dp + ty;
 | |
| 
 | |
|       /* this is the number of times the loop will iterrate, essentially
 | |
|          while (tx++ < a->used && ty-- >= 0) { ... }
 | |
|        */
 | |
|       iy = MIN(a->used-tx, ty+1);
 | |
| 
 | |
|       /* execute loop */
 | |
|       for (iz = 0; iz < iy; ++iz) {
 | |
|          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | |
| 
 | |
|       }
 | |
| 
 | |
|       /* store term */
 | |
|       W[ix] = ((mp_digit)_W) & MP_MASK;
 | |
| 
 | |
|       /* make next carry */
 | |
|       _W = _W >> ((mp_word)DIGIT_BIT);
 | |
|  }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse  = c->used;
 | |
|   c->used = pa;
 | |
| 
 | |
|   {
 | |
|     register mp_digit *tmpc;
 | |
|     tmpc = c->dp;
 | |
|     for (ix = 0; ix < pa+1; ix++) {
 | |
|       /* now extract the previous digit [below the carry] */
 | |
|       *tmpc++ = W[ix];
 | |
|     }
 | |
| 
 | |
|     /* clear unused digits [that existed in the old copy of c] */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_fast_s_mp_mul_digs.c */
 | |
| 
 | |
| /* Start: bn_fast_s_mp_mul_high_digs.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* this is a modified version of fast_s_mul_digs that only produces
 | |
|  * output digits *above* digs.  See the comments for fast_s_mul_digs
 | |
|  * to see how it works.
 | |
|  *
 | |
|  * This is used in the Barrett reduction since for one of the multiplications
 | |
|  * only the higher digits were needed.  This essentially halves the work.
 | |
|  *
 | |
|  * Based on Algorithm 14.12 on pp.595 of HAC.
 | |
|  */
 | |
| int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   int     olduse, res, pa, ix, iz;
 | |
|   mp_digit W[MP_WARRAY];
 | |
|   mp_word  _W;
 | |
| 
 | |
|   /* grow the destination as required */
 | |
|   pa = a->used + b->used;
 | |
|   if (c->alloc < pa) {
 | |
|     if ((res = mp_grow (c, pa)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* number of output digits to produce */
 | |
|   pa = a->used + b->used;
 | |
|   _W = 0;
 | |
|   for (ix = digs; ix < pa; ix++) {
 | |
|       int      tx, ty, iy;
 | |
|       mp_digit *tmpx, *tmpy;
 | |
| 
 | |
|       /* get offsets into the two bignums */
 | |
|       ty = MIN(b->used-1, ix);
 | |
|       tx = ix - ty;
 | |
| 
 | |
|       /* setup temp aliases */
 | |
|       tmpx = a->dp + tx;
 | |
|       tmpy = b->dp + ty;
 | |
| 
 | |
|       /* this is the number of times the loop will iterrate, essentially its
 | |
|          while (tx++ < a->used && ty-- >= 0) { ... }
 | |
|        */
 | |
|       iy = MIN(a->used-tx, ty+1);
 | |
| 
 | |
|       /* execute loop */
 | |
|       for (iz = 0; iz < iy; iz++) {
 | |
|          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | |
|       }
 | |
| 
 | |
|       /* store term */
 | |
|       W[ix] = ((mp_digit)_W) & MP_MASK;
 | |
| 
 | |
|       /* make next carry */
 | |
|       _W = _W >> ((mp_word)DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse  = c->used;
 | |
|   c->used = pa;
 | |
| 
 | |
|   {
 | |
|     register mp_digit *tmpc;
 | |
| 
 | |
|     tmpc = c->dp + digs;
 | |
|     for (ix = digs; ix < pa; ix++) {
 | |
|       /* now extract the previous digit [below the carry] */
 | |
|       *tmpc++ = W[ix];
 | |
|     }
 | |
| 
 | |
|     /* clear unused digits [that existed in the old copy of c] */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_fast_s_mp_mul_high_digs.c */
 | |
| 
 | |
| /* Start: bn_fast_s_mp_sqr.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_FAST_S_MP_SQR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* the jist of squaring...
 | |
|  * you do like mult except the offset of the tmpx [one that
 | |
|  * starts closer to zero] can't equal the offset of tmpy.
 | |
|  * So basically you set up iy like before then you min it with
 | |
|  * (ty-tx) so that it never happens.  You double all those
 | |
|  * you add in the inner loop
 | |
| 
 | |
| After that loop you do the squares and add them in.
 | |
| */
 | |
| 
 | |
| int fast_s_mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int       olduse, res, pa, ix, iz;
 | |
|   mp_digit   W[MP_WARRAY], *tmpx;
 | |
|   mp_word   W1;
 | |
| 
 | |
|   /* grow the destination as required */
 | |
|   pa = a->used + a->used;
 | |
|   if (b->alloc < pa) {
 | |
|     if ((res = mp_grow (b, pa)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* number of output digits to produce */
 | |
|   W1 = 0;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|       int      tx, ty, iy;
 | |
|       mp_word  _W;
 | |
|       mp_digit *tmpy;
 | |
| 
 | |
|       /* clear counter */
 | |
|       _W = 0;
 | |
| 
 | |
|       /* get offsets into the two bignums */
 | |
|       ty = MIN(a->used-1, ix);
 | |
|       tx = ix - ty;
 | |
| 
 | |
|       /* setup temp aliases */
 | |
|       tmpx = a->dp + tx;
 | |
|       tmpy = a->dp + ty;
 | |
| 
 | |
|       /* this is the number of times the loop will iterrate, essentially
 | |
|          while (tx++ < a->used && ty-- >= 0) { ... }
 | |
|        */
 | |
|       iy = MIN(a->used-tx, ty+1);
 | |
| 
 | |
|       /* now for squaring tx can never equal ty
 | |
|        * we halve the distance since they approach at a rate of 2x
 | |
|        * and we have to round because odd cases need to be executed
 | |
|        */
 | |
|       iy = MIN(iy, (ty-tx+1)>>1);
 | |
| 
 | |
|       /* execute loop */
 | |
|       for (iz = 0; iz < iy; iz++) {
 | |
|          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
 | |
|       }
 | |
| 
 | |
|       /* double the inner product and add carry */
 | |
|       _W = _W + _W + W1;
 | |
| 
 | |
|       /* even columns have the square term in them */
 | |
|       if ((ix&1) == 0) {
 | |
|          _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
 | |
|       }
 | |
| 
 | |
|       /* store it */
 | |
|       W[ix] = (mp_digit)(_W & MP_MASK);
 | |
| 
 | |
|       /* make next carry */
 | |
|       W1 = _W >> ((mp_word)DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* setup dest */
 | |
|   olduse  = b->used;
 | |
|   b->used = a->used+a->used;
 | |
| 
 | |
|   {
 | |
|     mp_digit *tmpb;
 | |
|     tmpb = b->dp;
 | |
|     for (ix = 0; ix < pa; ix++) {
 | |
|       *tmpb++ = W[ix] & MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* clear unused digits [that existed in the old copy of c] */
 | |
|     for (; ix < olduse; ix++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (b);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_fast_s_mp_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_2expt.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_2EXPT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes a = 2**b
 | |
|  *
 | |
|  * Simple algorithm which zeroes the int, grows it then just sets one bit
 | |
|  * as required.
 | |
|  */
 | |
| int
 | |
| mp_2expt (mp_int * a, int b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* zero a as per default */
 | |
|   mp_zero (a);
 | |
| 
 | |
|   /* grow a to accomodate the single bit */
 | |
|   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* set the used count of where the bit will go */
 | |
|   a->used = b / DIGIT_BIT + 1;
 | |
| 
 | |
|   /* put the single bit in its place */
 | |
|   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_2expt.c */
 | |
| 
 | |
| /* Start: bn_mp_abs.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_ABS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* b = |a|
 | |
|  *
 | |
|  * Simple function copies the input and fixes the sign to positive
 | |
|  */
 | |
| int
 | |
| mp_abs (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* copy a to b */
 | |
|   if (a != b) {
 | |
|      if ((res = mp_copy (a, b)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* force the sign of b to positive */
 | |
|   b->sign = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_abs.c */
 | |
| 
 | |
| /* Start: bn_mp_add.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_ADD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* high level addition (handles signs) */
 | |
| int mp_add (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     sa, sb, res;
 | |
| 
 | |
|   /* get sign of both inputs */
 | |
|   sa = a->sign;
 | |
|   sb = b->sign;
 | |
| 
 | |
|   /* handle two cases, not four */
 | |
|   if (sa == sb) {
 | |
|     /* both positive or both negative */
 | |
|     /* add their magnitudes, copy the sign */
 | |
|     c->sign = sa;
 | |
|     res = s_mp_add (a, b, c);
 | |
|   } else {
 | |
|     /* one positive, the other negative */
 | |
|     /* subtract the one with the greater magnitude from */
 | |
|     /* the one of the lesser magnitude.  The result gets */
 | |
|     /* the sign of the one with the greater magnitude. */
 | |
|     if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|       c->sign = sb;
 | |
|       res = s_mp_sub (b, a, c);
 | |
|     } else {
 | |
|       c->sign = sa;
 | |
|       res = s_mp_sub (a, b, c);
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_add.c */
 | |
| 
 | |
| /* Start: bn_mp_add_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_ADD_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* single digit addition */
 | |
| int
 | |
| mp_add_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, oldused;
 | |
|   mp_digit *tmpa, *tmpc, mu;
 | |
| 
 | |
|   /* grow c as required */
 | |
|   if (c->alloc < a->used + 1) {
 | |
|      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* if a is negative and |a| >= b, call c = |a| - b */
 | |
|   if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
 | |
|      /* temporarily fix sign of a */
 | |
|      a->sign = MP_ZPOS;
 | |
| 
 | |
|      /* c = |a| - b */
 | |
|      res = mp_sub_d(a, b, c);
 | |
| 
 | |
|      /* fix sign  */
 | |
|      a->sign = c->sign = MP_NEG;
 | |
| 
 | |
|      /* clamp */
 | |
|      mp_clamp(c);
 | |
| 
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* old number of used digits in c */
 | |
|   oldused = c->used;
 | |
| 
 | |
|   /* sign always positive */
 | |
|   c->sign = MP_ZPOS;
 | |
| 
 | |
|   /* source alias */
 | |
|   tmpa    = a->dp;
 | |
| 
 | |
|   /* destination alias */
 | |
|   tmpc    = c->dp;
 | |
| 
 | |
|   /* if a is positive */
 | |
|   if (a->sign == MP_ZPOS) {
 | |
|      /* add digit, after this we're propagating
 | |
|       * the carry.
 | |
|       */
 | |
|      *tmpc   = *tmpa++ + b;
 | |
|      mu      = *tmpc >> DIGIT_BIT;
 | |
|      *tmpc++ &= MP_MASK;
 | |
| 
 | |
|      /* now handle rest of the digits */
 | |
|      for (ix = 1; ix < a->used; ix++) {
 | |
|         *tmpc   = *tmpa++ + mu;
 | |
|         mu      = *tmpc >> DIGIT_BIT;
 | |
|         *tmpc++ &= MP_MASK;
 | |
|      }
 | |
|      /* set final carry */
 | |
|      ix++;
 | |
|      *tmpc++  = mu;
 | |
| 
 | |
|      /* setup size */
 | |
|      c->used = a->used + 1;
 | |
|   } else {
 | |
|      /* a was negative and |a| < b */
 | |
|      c->used  = 1;
 | |
| 
 | |
|      /* the result is a single digit */
 | |
|      if (a->used == 1) {
 | |
|         *tmpc++  =  b - a->dp[0];
 | |
|      } else {
 | |
|         *tmpc++  =  b;
 | |
|      }
 | |
| 
 | |
|      /* setup count so the clearing of oldused
 | |
|       * can fall through correctly
 | |
|       */
 | |
|      ix       = 1;
 | |
|   }
 | |
| 
 | |
|   /* now zero to oldused */
 | |
|   while (ix++ < oldused) {
 | |
|      *tmpc++ = 0;
 | |
|   }
 | |
|   mp_clamp(c);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_add_d.c */
 | |
| 
 | |
| /* Start: bn_mp_addmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_ADDMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* d = a + b (mod c) */
 | |
| int
 | |
| mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_add (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_addmod.c */
 | |
| 
 | |
| /* Start: bn_mp_and.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_AND_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* AND two ints together */
 | |
| int
 | |
| mp_and (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, px;
 | |
|   mp_int  t, *x;
 | |
| 
 | |
|   if (a->used > b->used) {
 | |
|     if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = b->used;
 | |
|     x = b;
 | |
|   } else {
 | |
|     if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = a->used;
 | |
|     x = a;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < px; ix++) {
 | |
|     t.dp[ix] &= x->dp[ix];
 | |
|   }
 | |
| 
 | |
|   /* zero digits above the last from the smallest mp_int */
 | |
|   for (; ix < t.used; ix++) {
 | |
|     t.dp[ix] = 0;
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (c, &t);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_and.c */
 | |
| 
 | |
| /* Start: bn_mp_clamp.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CLAMP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* trim unused digits
 | |
|  *
 | |
|  * This is used to ensure that leading zero digits are
 | |
|  * trimed and the leading "used" digit will be non-zero
 | |
|  * Typically very fast.  Also fixes the sign if there
 | |
|  * are no more leading digits
 | |
|  */
 | |
| void
 | |
| mp_clamp (mp_int * a)
 | |
| {
 | |
|   /* decrease used while the most significant digit is
 | |
|    * zero.
 | |
|    */
 | |
|   while (a->used > 0 && a->dp[a->used - 1] == 0) {
 | |
|     --(a->used);
 | |
|   }
 | |
| 
 | |
|   /* reset the sign flag if used == 0 */
 | |
|   if (a->used == 0) {
 | |
|     a->sign = MP_ZPOS;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_clamp.c */
 | |
| 
 | |
| /* Start: bn_mp_clear.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CLEAR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* clear one (frees)  */
 | |
| void
 | |
| mp_clear (mp_int * a)
 | |
| {
 | |
|   int i;
 | |
| 
 | |
|   /* only do anything if a hasn't been freed previously */
 | |
|   if (a->dp != NULL) {
 | |
|     /* first zero the digits */
 | |
|     for (i = 0; i < a->used; i++) {
 | |
|         a->dp[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /* free ram */
 | |
|     XFREE(a->dp);
 | |
| 
 | |
|     /* reset members to make debugging easier */
 | |
|     a->dp    = NULL;
 | |
|     a->alloc = a->used = 0;
 | |
|     a->sign  = MP_ZPOS;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_clear.c */
 | |
| 
 | |
| /* Start: bn_mp_clear_multi.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CLEAR_MULTI_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| #include <stdarg.h>
 | |
| 
 | |
| void mp_clear_multi(mp_int *mp, ...)
 | |
| {
 | |
|     mp_int* next_mp = mp;
 | |
|     va_list args;
 | |
|     va_start(args, mp);
 | |
|     while (next_mp != NULL) {
 | |
|         mp_clear(next_mp);
 | |
|         next_mp = va_arg(args, mp_int*);
 | |
|     }
 | |
|     va_end(args);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_clear_multi.c */
 | |
| 
 | |
| /* Start: bn_mp_cmp.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CMP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* compare two ints (signed)*/
 | |
| int
 | |
| mp_cmp (mp_int * a, mp_int * b)
 | |
| {
 | |
|   /* compare based on sign */
 | |
|   if (a->sign != b->sign) {
 | |
|      if (a->sign == MP_NEG) {
 | |
|         return MP_LT;
 | |
|      } else {
 | |
|         return MP_GT;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* compare digits */
 | |
|   if (a->sign == MP_NEG) {
 | |
|      /* if negative compare opposite direction */
 | |
|      return mp_cmp_mag(b, a);
 | |
|   } else {
 | |
|      return mp_cmp_mag(a, b);
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_cmp.c */
 | |
| 
 | |
| /* Start: bn_mp_cmp_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CMP_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* compare a digit */
 | |
| int mp_cmp_d(mp_int * a, mp_digit b)
 | |
| {
 | |
|   /* compare based on sign */
 | |
|   if (a->sign == MP_NEG) {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
|   /* compare based on magnitude */
 | |
|   if (a->used > 1) {
 | |
|     return MP_GT;
 | |
|   }
 | |
| 
 | |
|   /* compare the only digit of a to b */
 | |
|   if (a->dp[0] > b) {
 | |
|     return MP_GT;
 | |
|   } else if (a->dp[0] < b) {
 | |
|     return MP_LT;
 | |
|   } else {
 | |
|     return MP_EQ;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_cmp_d.c */
 | |
| 
 | |
| /* Start: bn_mp_cmp_mag.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CMP_MAG_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* compare maginitude of two ints (unsigned) */
 | |
| int mp_cmp_mag (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     n;
 | |
|   mp_digit *tmpa, *tmpb;
 | |
| 
 | |
|   /* compare based on # of non-zero digits */
 | |
|   if (a->used > b->used) {
 | |
|     return MP_GT;
 | |
|   }
 | |
| 
 | |
|   if (a->used < b->used) {
 | |
|     return MP_LT;
 | |
|   }
 | |
| 
 | |
|   /* alias for a */
 | |
|   tmpa = a->dp + (a->used - 1);
 | |
| 
 | |
|   /* alias for b */
 | |
|   tmpb = b->dp + (a->used - 1);
 | |
| 
 | |
|   /* compare based on digits  */
 | |
|   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
 | |
|     if (*tmpa > *tmpb) {
 | |
|       return MP_GT;
 | |
|     }
 | |
| 
 | |
|     if (*tmpa < *tmpb) {
 | |
|       return MP_LT;
 | |
|     }
 | |
|   }
 | |
|   return MP_EQ;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_cmp_mag.c */
 | |
| 
 | |
| /* Start: bn_mp_cnt_lsb.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_CNT_LSB_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| static const int lnz[16] = {
 | |
|    4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
 | |
| };
 | |
| 
 | |
| /* Counts the number of lsbs which are zero before the first zero bit */
 | |
| int mp_cnt_lsb(mp_int *a)
 | |
| {
 | |
|    int x;
 | |
|    mp_digit q, qq;
 | |
| 
 | |
|    /* easy out */
 | |
|    if (mp_iszero(a) == 1) {
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    /* scan lower digits until non-zero */
 | |
|    for (x = 0; x < a->used && a->dp[x] == 0; x++);
 | |
|    q = a->dp[x];
 | |
|    x *= DIGIT_BIT;
 | |
| 
 | |
|    /* now scan this digit until a 1 is found */
 | |
|    if ((q & 1) == 0) {
 | |
|       do {
 | |
|          qq  = q & 15;
 | |
|          x  += lnz[qq];
 | |
|          q >>= 4;
 | |
|       } while (qq == 0);
 | |
|    }
 | |
|    return x;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_cnt_lsb.c */
 | |
| 
 | |
| /* Start: bn_mp_copy.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_COPY_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* copy, b = a */
 | |
| int
 | |
| mp_copy (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res, n;
 | |
| 
 | |
|   /* if dst == src do nothing */
 | |
|   if (a == b) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* grow dest */
 | |
|   if (b->alloc < a->used) {
 | |
|      if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* zero b and copy the parameters over */
 | |
|   {
 | |
|     register mp_digit *tmpa, *tmpb;
 | |
| 
 | |
|     /* pointer aliases */
 | |
| 
 | |
|     /* source */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* destination */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* copy all the digits */
 | |
|     for (n = 0; n < a->used; n++) {
 | |
|       *tmpb++ = *tmpa++;
 | |
|     }
 | |
| 
 | |
|     /* clear high digits */
 | |
|     for (; n < b->used; n++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* copy used count and sign */
 | |
|   b->used = a->used;
 | |
|   b->sign = a->sign;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_copy.c */
 | |
| 
 | |
| /* Start: bn_mp_count_bits.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_COUNT_BITS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* returns the number of bits in an int */
 | |
| int
 | |
| mp_count_bits (mp_int * a)
 | |
| {
 | |
|   int     r;
 | |
|   mp_digit q;
 | |
| 
 | |
|   /* shortcut */
 | |
|   if (a->used == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   /* get number of digits and add that */
 | |
|   r = (a->used - 1) * DIGIT_BIT;
 | |
| 
 | |
|   /* take the last digit and count the bits in it */
 | |
|   q = a->dp[a->used - 1];
 | |
|   while (q > ((mp_digit) 0)) {
 | |
|     ++r;
 | |
|     q >>= ((mp_digit) 1);
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_count_bits.c */
 | |
| 
 | |
| /* Start: bn_mp_div.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DIV_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| #ifdef BN_MP_DIV_SMALL
 | |
| 
 | |
| /* slower bit-bang division... also smaller */
 | |
| int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|    mp_int ta, tb, tq, q;
 | |
|    int    res, n, n2;
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 	
 | |
|   /* init our temps */
 | |
|   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   mp_set(&tq, 1);
 | |
|   n = mp_count_bits(a) - mp_count_bits(b);
 | |
|   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
 | |
|       ((res = mp_abs(b, &tb)) != MP_OKAY) ||
 | |
|       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
 | |
|       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
 | |
|       goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   while (n-- >= 0) {
 | |
|      if (mp_cmp(&tb, &ta) != MP_GT) {
 | |
|         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
 | |
|             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
 | |
|            goto LBL_ERR;
 | |
|         }
 | |
|      }
 | |
|      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
 | |
|          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
 | |
|            goto LBL_ERR;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* now q == quotient and ta == remainder */
 | |
|   n  = a->sign;
 | |
|   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
 | |
|   if (c != NULL) {
 | |
|      mp_exch(c, &q);
 | |
|      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
 | |
|   }
 | |
|   if (d != NULL) {
 | |
|      mp_exch(d, &ta);
 | |
|      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
 | |
|   }
 | |
| LBL_ERR:
 | |
|    mp_clear_multi(&ta, &tb, &tq, &q, NULL);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* integer signed division.
 | |
|  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
 | |
|  * HAC pp.598 Algorithm 14.20
 | |
|  *
 | |
|  * Note that the description in HAC is horribly
 | |
|  * incomplete.  For example, it doesn't consider
 | |
|  * the case where digits are removed from 'x' in
 | |
|  * the inner loop.  It also doesn't consider the
 | |
|  * case that y has fewer than three digits, etc..
 | |
|  *
 | |
|  * The overall algorithm is as described as
 | |
|  * 14.20 from HAC but fixed to treat these cases.
 | |
| */
 | |
| int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_int  q, x, y, t1, t2;
 | |
|   int     res, n, t, i, norm, neg;
 | |
| 
 | |
|   /* is divisor zero ? */
 | |
|   if (mp_iszero (b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if a < b then q=0, r = a */
 | |
|   if (mp_cmp_mag (a, b) == MP_LT) {
 | |
|     if (d != NULL) {
 | |
|       res = mp_copy (a, d);
 | |
|     } else {
 | |
|       res = MP_OKAY;
 | |
|     }
 | |
|     if (c != NULL) {
 | |
|       mp_zero (c);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   q.used = a->used + 2;
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     goto LBL_Q;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto LBL_T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
 | |
|     goto LBL_T2;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
 | |
|     goto LBL_X;
 | |
|   }
 | |
| 
 | |
|   /* fix the sign */
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
|   x.sign = y.sign = MP_ZPOS;
 | |
| 
 | |
|   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
 | |
|   norm = mp_count_bits(&y) % DIGIT_BIT;
 | |
|   if (norm < (int)(DIGIT_BIT-1)) {
 | |
|      norm = (DIGIT_BIT-1) - norm;
 | |
|      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
 | |
|        goto LBL_Y;
 | |
|      }
 | |
|      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
 | |
|        goto LBL_Y;
 | |
|      }
 | |
|   } else {
 | |
|      norm = 0;
 | |
|   }
 | |
| 
 | |
|   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
 | |
|   n = x.used - 1;
 | |
|   t = y.used - 1;
 | |
| 
 | |
|   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
 | |
|   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
 | |
|     goto LBL_Y;
 | |
|   }
 | |
| 
 | |
|   while (mp_cmp (&x, &y) != MP_LT) {
 | |
|     ++(q.dp[n - t]);
 | |
|     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset y by shifting it back down */
 | |
|   mp_rshd (&y, n - t);
 | |
| 
 | |
|   /* step 3. for i from n down to (t + 1) */
 | |
|   for (i = n; i >= (t + 1); i--) {
 | |
|     if (i > x.used) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
 | |
|      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
 | |
|     if (x.dp[i] == y.dp[t]) {
 | |
|       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
 | |
|     } else {
 | |
|       mp_word tmp;
 | |
|       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
 | |
|       tmp |= ((mp_word) x.dp[i - 1]);
 | |
|       tmp /= ((mp_word) y.dp[t]);
 | |
|       if (tmp > (mp_word) MP_MASK)
 | |
|         tmp = MP_MASK;
 | |
|       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
 | |
|     }
 | |
| 
 | |
|     /* while (q{i-t-1} * (yt * b + y{t-1})) >
 | |
|              xi * b**2 + xi-1 * b + xi-2
 | |
| 
 | |
|        do q{i-t-1} -= 1;
 | |
|     */
 | |
|     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
 | |
|     do {
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
 | |
| 
 | |
|       /* find left hand */
 | |
|       mp_zero (&t1);
 | |
|       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
 | |
|       t1.dp[1] = y.dp[t];
 | |
|       t1.used = 2;
 | |
|       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       /* find right hand */
 | |
|       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
 | |
|       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
 | |
|       t2.dp[2] = x.dp[i];
 | |
|       t2.used = 3;
 | |
|     } while (mp_cmp_mag(&t1, &t2) == MP_GT);
 | |
| 
 | |
|     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
 | |
|     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
| 
 | |
|     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
 | |
|     if (x.sign == MP_NEG) {
 | |
|       if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
|       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
|       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
 | |
|         goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* now q is the quotient and x is the remainder
 | |
|    * [which we have to normalize]
 | |
|    */
 | |
| 
 | |
|   /* get sign before writing to c */
 | |
|   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 | |
| 
 | |
|   if (c != NULL) {
 | |
|     mp_clamp (&q);
 | |
|     mp_exch (&q, c);
 | |
|     c->sign = neg;
 | |
|   }
 | |
| 
 | |
|   if (d != NULL) {
 | |
|     mp_div_2d (&x, norm, &x, NULL);
 | |
|     mp_exch (&x, d);
 | |
|   }
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_Y:mp_clear (&y);
 | |
| LBL_X:mp_clear (&x);
 | |
| LBL_T2:mp_clear (&t2);
 | |
| LBL_T1:mp_clear (&t1);
 | |
| LBL_Q:mp_clear (&q);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_div.c */
 | |
| 
 | |
| /* Start: bn_mp_div_2.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DIV_2_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* b = a/2 */
 | |
| int mp_div_2(mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, res, oldused;
 | |
| 
 | |
|   /* copy */
 | |
|   if (b->alloc < a->used) {
 | |
|     if ((res = mp_grow (b, a->used)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   oldused = b->used;
 | |
|   b->used = a->used;
 | |
|   {
 | |
|     register mp_digit r, rr, *tmpa, *tmpb;
 | |
| 
 | |
|     /* source alias */
 | |
|     tmpa = a->dp + b->used - 1;
 | |
| 
 | |
|     /* dest alias */
 | |
|     tmpb = b->dp + b->used - 1;
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = b->used - 1; x >= 0; x--) {
 | |
|       /* get the carry for the next iteration */
 | |
|       rr = *tmpa & 1;
 | |
| 
 | |
|       /* shift the current digit, add in carry and store */
 | |
|       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
 | |
| 
 | |
|       /* forward carry to next iteration */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* zero excess digits */
 | |
|     tmpb = b->dp + b->used;
 | |
|     for (x = b->used; x < oldused; x++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->sign = a->sign;
 | |
|   mp_clamp (b);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_div_2.c */
 | |
| 
 | |
| /* Start: bn_mp_div_2d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DIV_2D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
 | |
| int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   mp_digit D, r, rr;
 | |
|   int     x, res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   /* if the shift count is <= 0 then we do no work */
 | |
|   if (b <= 0) {
 | |
|     res = mp_copy (a, c);
 | |
|     if (d != NULL) {
 | |
|       mp_zero (d);
 | |
|     }
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* get the remainder */
 | |
|   if (d != NULL) {
 | |
|     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* copy */
 | |
|   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* shift by as many digits in the bit count */
 | |
|   if (b >= (int)DIGIT_BIT) {
 | |
|     mp_rshd (c, b / DIGIT_BIT);
 | |
|   }
 | |
| 
 | |
|   /* shift any bit count < DIGIT_BIT */
 | |
|   D = (mp_digit) (b % DIGIT_BIT);
 | |
|   if (D != 0) {
 | |
|     register mp_digit *tmpc, mask, shift;
 | |
| 
 | |
|     /* mask */
 | |
|     mask = (((mp_digit)1) << D) - 1;
 | |
| 
 | |
|     /* shift for lsb */
 | |
|     shift = DIGIT_BIT - D;
 | |
| 
 | |
|     /* alias */
 | |
|     tmpc = c->dp + (c->used - 1);
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = c->used - 1; x >= 0; x--) {
 | |
|       /* get the lower  bits of this word in a temp */
 | |
|       rr = *tmpc & mask;
 | |
| 
 | |
|       /* shift the current word and mix in the carry bits from the previous word */
 | |
|       *tmpc = (*tmpc >> D) | (r << shift);
 | |
|       --tmpc;
 | |
| 
 | |
|       /* set the carry to the carry bits of the current word found above */
 | |
|       r = rr;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   if (d != NULL) {
 | |
|     mp_exch (&t, d);
 | |
|   }
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_div_2d.c */
 | |
| 
 | |
| /* Start: bn_mp_div_3.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DIV_3_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* divide by three (based on routine from MPI and the GMP manual) */
 | |
| int
 | |
| mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
 | |
| {
 | |
|   mp_int   q;
 | |
|   mp_word  w, t;
 | |
|   mp_digit b;
 | |
|   int      res, ix;
 | |
| 
 | |
|   /* b = 2**DIGIT_BIT / 3 */
 | |
|   b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
 | |
| 
 | |
|   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   q.used = a->used;
 | |
|   q.sign = a->sign;
 | |
|   w = 0;
 | |
|   for (ix = a->used - 1; ix >= 0; ix--) {
 | |
|      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
 | |
| 
 | |
|      if (w >= 3) {
 | |
|         /* multiply w by [1/3] */
 | |
|         t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
 | |
| 
 | |
|         /* now subtract 3 * [w/3] from w, to get the remainder */
 | |
|         w -= t+t+t;
 | |
| 
 | |
|         /* fixup the remainder as required since
 | |
|          * the optimization is not exact.
 | |
|          */
 | |
|         while (w >= 3) {
 | |
|            t += 1;
 | |
|            w -= 3;
 | |
|         }
 | |
|       } else {
 | |
|         t = 0;
 | |
|       }
 | |
|       q.dp[ix] = (mp_digit)t;
 | |
|   }
 | |
| 
 | |
|   /* [optional] store the remainder */
 | |
|   if (d != NULL) {
 | |
|      *d = (mp_digit)w;
 | |
|   }
 | |
| 
 | |
|   /* [optional] store the quotient */
 | |
|   if (c != NULL) {
 | |
|      mp_clamp(&q);
 | |
|      mp_exch(&q, c);
 | |
|   }
 | |
|   mp_clear(&q);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_div_3.c */
 | |
| 
 | |
| /* Start: bn_mp_div_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DIV_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| static int s_is_power_of_two(mp_digit b, int *p)
 | |
| {
 | |
|    int x;
 | |
| 
 | |
|    /* fast return if no power of two */
 | |
|    if ((b==0) || (b & (b-1))) {
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    for (x = 0; x < DIGIT_BIT; x++) {
 | |
|       if (b == (((mp_digit)1)<<x)) {
 | |
|          *p = x;
 | |
|          return 1;
 | |
|       }
 | |
|    }
 | |
|    return 0;
 | |
| }
 | |
| 
 | |
| /* single digit division (based on routine from MPI) */
 | |
| int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
 | |
| {
 | |
|   mp_int  q;
 | |
|   mp_word w;
 | |
|   mp_digit t;
 | |
|   int     res, ix;
 | |
| 
 | |
|   /* cannot divide by zero */
 | |
|   if (b == 0) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* quick outs */
 | |
|   if (b == 1 || mp_iszero(a) == 1) {
 | |
|      if (d != NULL) {
 | |
|         *d = 0;
 | |
|      }
 | |
|      if (c != NULL) {
 | |
|         return mp_copy(a, c);
 | |
|      }
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* power of two ? */
 | |
|   if (s_is_power_of_two(b, &ix) == 1) {
 | |
|      if (d != NULL) {
 | |
|         *d = a->dp[0] & ((((mp_digit)1)<<ix) - 1);
 | |
|      }
 | |
|      if (c != NULL) {
 | |
|         return mp_div_2d(a, ix, c, NULL);
 | |
|      }
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
| #ifdef BN_MP_DIV_3_C
 | |
|   /* three? */
 | |
|   if (b == 3) {
 | |
|      return mp_div_3(a, c, d);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* no easy answer [c'est la vie].  Just division */
 | |
|   if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   q.used = a->used;
 | |
|   q.sign = a->sign;
 | |
|   w = 0;
 | |
|   for (ix = a->used - 1; ix >= 0; ix--) {
 | |
|      w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
 | |
| 
 | |
|      if (w >= b) {
 | |
|         t = (mp_digit)(w / b);
 | |
|         w -= ((mp_word)t) * ((mp_word)b);
 | |
|       } else {
 | |
|         t = 0;
 | |
|       }
 | |
|       q.dp[ix] = (mp_digit)t;
 | |
|   }
 | |
| 
 | |
|   if (d != NULL) {
 | |
|      *d = (mp_digit)w;
 | |
|   }
 | |
| 
 | |
|   if (c != NULL) {
 | |
|      mp_clamp(&q);
 | |
|      mp_exch(&q, c);
 | |
|   }
 | |
|   mp_clear(&q);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_div_d.c */
 | |
| 
 | |
| /* Start: bn_mp_dr_is_modulus.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DR_IS_MODULUS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines if a number is a valid DR modulus */
 | |
| int mp_dr_is_modulus(mp_int *a)
 | |
| {
 | |
|    int ix;
 | |
| 
 | |
|    /* must be at least two digits */
 | |
|    if (a->used < 2) {
 | |
|       return 0;
 | |
|    }
 | |
| 
 | |
|    /* must be of the form b**k - a [a <= b] so all
 | |
|     * but the first digit must be equal to -1 (mod b).
 | |
|     */
 | |
|    for (ix = 1; ix < a->used; ix++) {
 | |
|        if (a->dp[ix] != MP_MASK) {
 | |
|           return 0;
 | |
|        }
 | |
|    }
 | |
|    return 1;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_dr_is_modulus.c */
 | |
| 
 | |
| /* Start: bn_mp_dr_reduce.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DR_REDUCE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
 | |
|  *
 | |
|  * Based on algorithm from the paper
 | |
|  *
 | |
|  * "Generating Efficient Primes for Discrete Log Cryptosystems"
 | |
|  *                 Chae Hoon Lim, Pil Joong Lee,
 | |
|  *          POSTECH Information Research Laboratories
 | |
|  *
 | |
|  * The modulus must be of a special format [see manual]
 | |
|  *
 | |
|  * Has been modified to use algorithm 7.10 from the LTM book instead
 | |
|  *
 | |
|  * Input x must be in the range 0 <= x <= (n-1)**2
 | |
|  */
 | |
| int
 | |
| mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
 | |
| {
 | |
|   int      err, i, m;
 | |
|   mp_word  r;
 | |
|   mp_digit mu, *tmpx1, *tmpx2;
 | |
| 
 | |
|   /* m = digits in modulus */
 | |
|   m = n->used;
 | |
| 
 | |
|   /* ensure that "x" has at least 2m digits */
 | |
|   if (x->alloc < m + m) {
 | |
|     if ((err = mp_grow (x, m + m)) != MP_OKAY) {
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| /* top of loop, this is where the code resumes if
 | |
|  * another reduction pass is required.
 | |
|  */
 | |
| top:
 | |
|   /* aliases for digits */
 | |
|   /* alias for lower half of x */
 | |
|   tmpx1 = x->dp;
 | |
| 
 | |
|   /* alias for upper half of x, or x/B**m */
 | |
|   tmpx2 = x->dp + m;
 | |
| 
 | |
|   /* set carry to zero */
 | |
|   mu = 0;
 | |
| 
 | |
|   /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
 | |
|   for (i = 0; i < m; i++) {
 | |
|       r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
 | |
|       *tmpx1++  = (mp_digit)(r & MP_MASK);
 | |
|       mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
 | |
|   }
 | |
| 
 | |
|   /* set final carry */
 | |
|   *tmpx1++ = mu;
 | |
| 
 | |
|   /* zero words above m */
 | |
|   for (i = m + 1; i < x->used; i++) {
 | |
|       *tmpx1++ = 0;
 | |
|   }
 | |
| 
 | |
|   /* clamp, sub and return */
 | |
|   mp_clamp (x);
 | |
| 
 | |
|   /* if x >= n then subtract and reduce again
 | |
|    * Each successive "recursion" makes the input smaller and smaller.
 | |
|    */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     s_mp_sub(x, n, x);
 | |
|     goto top;
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_dr_reduce.c */
 | |
| 
 | |
| /* Start: bn_mp_dr_setup.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_DR_SETUP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines the setup value */
 | |
| void mp_dr_setup(mp_int *a, mp_digit *d)
 | |
| {
 | |
|    /* the casts are required if DIGIT_BIT is one less than
 | |
|     * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
 | |
|     */
 | |
|    *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
 | |
|         ((mp_word)a->dp[0]));
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_dr_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_exch.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_EXCH_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* swap the elements of two integers, for cases where you can't simply swap the
 | |
|  * mp_int pointers around
 | |
|  */
 | |
| void
 | |
| mp_exch (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  t;
 | |
| 
 | |
|   t  = *a;
 | |
|   *a = *b;
 | |
|   *b = t;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_exch.c */
 | |
| 
 | |
| /* Start: bn_mp_expt_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_EXPT_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* calculate c = a**b  using a square-multiply algorithm */
 | |
| int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   int     res, x;
 | |
|   mp_int  g;
 | |
| 
 | |
|   if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* set initial result */
 | |
|   mp_set (c, 1);
 | |
| 
 | |
|   for (x = 0; x < (int) DIGIT_BIT; x++) {
 | |
|     /* square */
 | |
|     if ((res = mp_sqr (c, c)) != MP_OKAY) {
 | |
|       mp_clear (&g);
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is set multiply */
 | |
|     if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
 | |
|       if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
 | |
|          mp_clear (&g);
 | |
|          return res;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* shift to next bit */
 | |
|     b <<= 1;
 | |
|   }
 | |
| 
 | |
|   mp_clear (&g);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_expt_d.c */
 | |
| 
 | |
| /* Start: bn_mp_exptmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_EXPTMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* this is a shell function that calls either the normal or Montgomery
 | |
|  * exptmod functions.  Originally the call to the montgomery code was
 | |
|  * embedded in the normal function but that wasted alot of stack space
 | |
|  * for nothing (since 99% of the time the Montgomery code would be called)
 | |
|  */
 | |
| int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 | |
| {
 | |
|   int dr;
 | |
| 
 | |
|   /* modulus P must be positive */
 | |
|   if (P->sign == MP_NEG) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if exponent X is negative we have to recurse */
 | |
|   if (X->sign == MP_NEG) {
 | |
| #ifdef BN_MP_INVMOD_C
 | |
|      mp_int tmpG, tmpX;
 | |
|      int err;
 | |
| 
 | |
|      /* first compute 1/G mod P */
 | |
|      if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* now get |X| */
 | |
|      if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | |
|         mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | |
|      err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | |
|      mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|      return err;
 | |
| #else
 | |
|      /* no invmod */
 | |
|      return MP_VAL;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| /* modified diminished radix reduction */
 | |
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
 | |
|   if (mp_reduce_is_2k_l(P) == MP_YES) {
 | |
|      return s_mp_exptmod(G, X, P, Y, 1);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_DR_IS_MODULUS_C
 | |
|   /* is it a DR modulus? */
 | |
|   dr = mp_dr_is_modulus(P);
 | |
| #else
 | |
|   /* default to no */
 | |
|   dr = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_REDUCE_IS_2K_C
 | |
|   /* if not, is it a unrestricted DR modulus? */
 | |
|   if (dr == 0) {
 | |
|      dr = mp_reduce_is_2k(P) << 1;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* if the modulus is odd or dr != 0 use the montgomery method */
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|   if (mp_isodd (P) == 1 || dr !=  0) {
 | |
|     return mp_exptmod_fast (G, X, P, Y, dr);
 | |
|   } else {
 | |
| #endif
 | |
| #ifdef BN_S_MP_EXPTMOD_C
 | |
|     /* otherwise use the generic Barrett reduction technique */
 | |
|     return s_mp_exptmod (G, X, P, Y, 0);
 | |
| #else
 | |
|     /* no exptmod for evens */
 | |
|     return MP_VAL;
 | |
| #endif
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_exptmod.c */
 | |
| 
 | |
| /* Start: bn_mp_exptmod_fast.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | |
|  *
 | |
|  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | |
|  * The value of k changes based on the size of the exponent.
 | |
|  *
 | |
|  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | |
|  */
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|    #define TAB_SIZE 32
 | |
| #else
 | |
|    #define TAB_SIZE 256
 | |
| #endif
 | |
| 
 | |
| int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[TAB_SIZE], res;
 | |
|   mp_digit buf, mp;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
| 
 | |
|   /* use a pointer to the reduction algorithm.  This allows us to use
 | |
|    * one of many reduction algorithms without modding the guts of
 | |
|    * the code with if statements everywhere.
 | |
|    */
 | |
|   int     (*redux)(mp_int*,mp_int*,mp_digit);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|   if (winsize > 5) {
 | |
|      winsize = 5;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   /* init first cell */
 | |
|   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | |
|      return err;
 | |
|   }
 | |
| 
 | |
|   /* now init the second half of the array */
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | |
|       for (y = 1<<(winsize-1); y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       mp_clear(&M[1]);
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* determine and setup reduction code */
 | |
|   if (redmode == 0) {
 | |
| #ifdef BN_MP_MONTGOMERY_SETUP_C
 | |
|      /* now setup montgomery  */
 | |
|      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
 | |
|         goto LBL_M;
 | |
|      }
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
| 
 | |
|      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | |
| #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | |
|      if (((P->used * 2 + 1) < MP_WARRAY) &&
 | |
|           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|         redux = fast_mp_montgomery_reduce;
 | |
|      } else
 | |
| #endif
 | |
|      {
 | |
| #ifdef BN_MP_MONTGOMERY_REDUCE_C
 | |
|         /* use slower baseline Montgomery method */
 | |
|         redux = mp_montgomery_reduce;
 | |
| #else
 | |
|         err = MP_VAL;
 | |
|         goto LBL_M;
 | |
| #endif
 | |
|      }
 | |
|   } else if (redmode == 1) {
 | |
| #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
 | |
|      /* setup DR reduction for moduli of the form B**k - b */
 | |
|      mp_dr_setup(P, &mp);
 | |
|      redux = mp_dr_reduce;
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
|   } else {
 | |
| #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
 | |
|      /* setup DR reduction for moduli of the form 2**k - b */
 | |
|      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
 | |
|         goto LBL_M;
 | |
|      }
 | |
|      redux = mp_reduce_2k;
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto LBL_M;
 | |
|   }
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
| 
 | |
|    *
 | |
|    * The first half of the table is not computed though accept for M[0] and M[1]
 | |
|    */
 | |
| 
 | |
|   if (redmode == 0) {
 | |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | |
|      /* now we need R mod m */
 | |
|      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_RES;
 | |
| #endif
 | |
| 
 | |
|      /* now set M[1] to G * R mod m */
 | |
|      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
|   } else {
 | |
|      mp_set(&res, 1);
 | |
|      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto LBL_RES;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       /* if digidx == -1 we are out of digits so break */
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       /* read next digit and reset bitcnt */
 | |
|       buf    = X->dp[digidx--];
 | |
|       bitcnt = (int)DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode    = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode   = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* get next bit of the window */
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (redmode == 0) {
 | |
|      /* fixup result if Montgomery reduction is used
 | |
|       * recall that any value in a Montgomery system is
 | |
|       * actually multiplied by R mod n.  So we have
 | |
|       * to reduce one more time to cancel out the factor
 | |
|       * of R.
 | |
|       */
 | |
|      if ((err = redux(&res, P, mp)) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* swap res with Y */
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| LBL_RES:mp_clear (&res);
 | |
| LBL_M:
 | |
|   mp_clear(&M[1]);
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_exptmod_fast.c */
 | |
| 
 | |
| /* Start: bn_mp_exteuclid.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_EXTEUCLID_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Extended euclidean algorithm of (a, b) produces
 | |
|    a*u1 + b*u2 = u3
 | |
|  */
 | |
| int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
 | |
| {
 | |
|    mp_int u1,u2,u3,v1,v2,v3,t1,t2,t3,q,tmp;
 | |
|    int err;
 | |
| 
 | |
|    if ((err = mp_init_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    /* initialize, (u1,u2,u3) = (1,0,a) */
 | |
|    mp_set(&u1, 1);
 | |
|    if ((err = mp_copy(a, &u3)) != MP_OKAY)                                        { goto _ERR; }
 | |
| 
 | |
|    /* initialize, (v1,v2,v3) = (0,1,b) */
 | |
|    mp_set(&v2, 1);
 | |
|    if ((err = mp_copy(b, &v3)) != MP_OKAY)                                        { goto _ERR; }
 | |
| 
 | |
|    /* loop while v3 != 0 */
 | |
|    while (mp_iszero(&v3) == MP_NO) {
 | |
|        /* q = u3/v3 */
 | |
|        if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY)                         { goto _ERR; }
 | |
| 
 | |
|        /* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
 | |
|        if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }
 | |
|        if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY)                             { goto _ERR; }
 | |
|        if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }
 | |
|        if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY)                             { goto _ERR; }
 | |
|        if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY)                              { goto _ERR; }
 | |
|        if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY)                             { goto _ERR; }
 | |
| 
 | |
|        /* (u1,u2,u3) = (v1,v2,v3) */
 | |
|        if ((err = mp_copy(&v1, &u1)) != MP_OKAY)                                  { goto _ERR; }
 | |
|        if ((err = mp_copy(&v2, &u2)) != MP_OKAY)                                  { goto _ERR; }
 | |
|        if ((err = mp_copy(&v3, &u3)) != MP_OKAY)                                  { goto _ERR; }
 | |
| 
 | |
|        /* (v1,v2,v3) = (t1,t2,t3) */
 | |
|        if ((err = mp_copy(&t1, &v1)) != MP_OKAY)                                  { goto _ERR; }
 | |
|        if ((err = mp_copy(&t2, &v2)) != MP_OKAY)                                  { goto _ERR; }
 | |
|        if ((err = mp_copy(&t3, &v3)) != MP_OKAY)                                  { goto _ERR; }
 | |
|    }
 | |
| 
 | |
|    /* make sure U3 >= 0 */
 | |
|    if (u3.sign == MP_NEG) {
 | |
|       mp_neg(&u1, &u1);
 | |
|       mp_neg(&u2, &u2);
 | |
|       mp_neg(&u3, &u3);
 | |
|    }
 | |
| 
 | |
|    /* copy result out */
 | |
|    if (U1 != NULL) { mp_exch(U1, &u1); }
 | |
|    if (U2 != NULL) { mp_exch(U2, &u2); }
 | |
|    if (U3 != NULL) { mp_exch(U3, &u3); }
 | |
| 
 | |
|    err = MP_OKAY;
 | |
| _ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
 | |
|    return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_exteuclid.c */
 | |
| 
 | |
| /* Start: bn_mp_fread.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_FREAD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* read a bigint from a file stream in ASCII */
 | |
| int mp_fread(mp_int *a, int radix, FILE *stream)
 | |
| {
 | |
|    int err, ch, neg, y;
 | |
| 
 | |
|    /* clear a */
 | |
|    mp_zero(a);
 | |
| 
 | |
|    /* if first digit is - then set negative */
 | |
|    ch = fgetc(stream);
 | |
|    if (ch == '-') {
 | |
|       neg = MP_NEG;
 | |
|       ch = fgetc(stream);
 | |
|    } else {
 | |
|       neg = MP_ZPOS;
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       /* find y in the radix map */
 | |
|       for (y = 0; y < radix; y++) {
 | |
|           if (mp_s_rmap[y] == ch) {
 | |
|              break;
 | |
|           }
 | |
|       }
 | |
|       if (y == radix) {
 | |
|          break;
 | |
|       }
 | |
| 
 | |
|       /* shift up and add */
 | |
|       if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|       if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
| 
 | |
|       ch = fgetc(stream);
 | |
|    }
 | |
|    if (mp_cmp_d(a, 0) != MP_EQ) {
 | |
|       a->sign = neg;
 | |
|    }
 | |
| 
 | |
|    return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_fread.c */
 | |
| 
 | |
| /* Start: bn_mp_fwrite.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_FWRITE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| int mp_fwrite(mp_int *a, int radix, FILE *stream)
 | |
| {
 | |
|    char *buf;
 | |
|    int err, len, x;
 | |
| 
 | |
|    if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    buf = OPT_CAST(char) XMALLOC (len);
 | |
|    if (buf == NULL) {
 | |
|       return MP_MEM;
 | |
|    }
 | |
| 
 | |
|    if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
 | |
|       XFREE (buf);
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    for (x = 0; x < len; x++) {
 | |
|        if (fputc(buf[x], stream) == EOF) {
 | |
|           XFREE (buf);
 | |
|           return MP_VAL;
 | |
|        }
 | |
|    }
 | |
| 
 | |
|    XFREE (buf);
 | |
|    return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_fwrite.c */
 | |
| 
 | |
| /* Start: bn_mp_gcd.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_GCD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Greatest Common Divisor using the binary method */
 | |
| int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  u, v;
 | |
|   int     k, u_lsb, v_lsb, res;
 | |
| 
 | |
|   /* either zero than gcd is the largest */
 | |
|   if (mp_iszero (a) == MP_YES) {
 | |
|     return mp_abs (b, c);
 | |
|   }
 | |
|   if (mp_iszero (b) == MP_YES) {
 | |
|     return mp_abs (a, c);
 | |
|   }
 | |
| 
 | |
|   /* get copies of a and b we can modify */
 | |
|   if ((res = mp_init_copy (&u, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&v, b)) != MP_OKAY) {
 | |
|     goto LBL_U;
 | |
|   }
 | |
| 
 | |
|   /* must be positive for the remainder of the algorithm */
 | |
|   u.sign = v.sign = MP_ZPOS;
 | |
| 
 | |
|   /* B1.  Find the common power of two for u and v */
 | |
|   u_lsb = mp_cnt_lsb(&u);
 | |
|   v_lsb = mp_cnt_lsb(&v);
 | |
|   k     = MIN(u_lsb, v_lsb);
 | |
| 
 | |
|   if (k > 0) {
 | |
|      /* divide the power of two out */
 | |
|      if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
| 
 | |
|      if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* divide any remaining factors of two out */
 | |
|   if (u_lsb != k) {
 | |
|      if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if (v_lsb != k) {
 | |
|      if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   while (mp_iszero(&v) == 0) {
 | |
|      /* make sure v is the largest */
 | |
|      if (mp_cmp_mag(&u, &v) == MP_GT) {
 | |
|         /* swap u and v to make sure v is >= u */
 | |
|         mp_exch(&u, &v);
 | |
|      }
 | |
| 
 | |
|      /* subtract smallest from largest */
 | |
|      if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
| 
 | |
|      /* Divide out all factors of two */
 | |
|      if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
 | |
|         goto LBL_V;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* multiply by 2**k which we divided out at the beginning */
 | |
|   if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
 | |
|      goto LBL_V;
 | |
|   }
 | |
|   c->sign = MP_ZPOS;
 | |
|   res = MP_OKAY;
 | |
| LBL_V:mp_clear (&u);
 | |
| LBL_U:mp_clear (&v);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_gcd.c */
 | |
| 
 | |
| /* Start: bn_mp_get_int.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_GET_INT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* get the lower 32-bits of an mp_int */
 | |
| unsigned long mp_get_int(mp_int * a)
 | |
| {
 | |
|   int i;
 | |
|   unsigned long res;
 | |
| 
 | |
|   if (a->used == 0) {
 | |
|      return 0;
 | |
|   }
 | |
| 
 | |
|   /* get number of digits of the lsb we have to read */
 | |
|   i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
 | |
| 
 | |
|   /* get most significant digit of result */
 | |
|   res = DIGIT(a,i);
 | |
| 
 | |
|   while (--i >= 0) {
 | |
|     res = (res << DIGIT_BIT) | DIGIT(a,i);
 | |
|   }
 | |
| 
 | |
|   /* force result to 32-bits always so it is consistent on non 32-bit platforms */
 | |
|   return res & 0xFFFFFFFFUL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_get_int.c */
 | |
| 
 | |
| /* Start: bn_mp_grow.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_GROW_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* grow as required */
 | |
| int mp_grow (mp_int * a, int size)
 | |
| {
 | |
|   int     i;
 | |
|   mp_digit *tmp;
 | |
| 
 | |
|   /* if the alloc size is smaller alloc more ram */
 | |
|   if (a->alloc < size) {
 | |
|     /* ensure there are always at least MP_PREC digits extra on top */
 | |
|     size += (MP_PREC * 2) - (size % MP_PREC);
 | |
| 
 | |
|     /* reallocate the array a->dp
 | |
|      *
 | |
|      * We store the return in a temporary variable
 | |
|      * in case the operation failed we don't want
 | |
|      * to overwrite the dp member of a.
 | |
|      */
 | |
|     tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
 | |
|     if (tmp == NULL) {
 | |
|       /* reallocation failed but "a" is still valid [can be freed] */
 | |
|       return MP_MEM;
 | |
|     }
 | |
| 
 | |
|     /* reallocation succeeded so set a->dp */
 | |
|     a->dp = tmp;
 | |
| 
 | |
|     /* zero excess digits */
 | |
|     i        = a->alloc;
 | |
|     a->alloc = size;
 | |
|     for (; i < a->alloc; i++) {
 | |
|       a->dp[i] = 0;
 | |
|     }
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_grow.c */
 | |
| 
 | |
| /* Start: bn_mp_init.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INIT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* init a new mp_int */
 | |
| int mp_init (mp_int * a)
 | |
| {
 | |
|   int i;
 | |
| 
 | |
|   /* allocate memory required and clear it */
 | |
|   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
 | |
|   if (a->dp == NULL) {
 | |
|     return MP_MEM;
 | |
|   }
 | |
| 
 | |
|   /* set the digits to zero */
 | |
|   for (i = 0; i < MP_PREC; i++) {
 | |
|       a->dp[i] = 0;
 | |
|   }
 | |
| 
 | |
|   /* set the used to zero, allocated digits to the default precision
 | |
|    * and sign to positive */
 | |
|   a->used  = 0;
 | |
|   a->alloc = MP_PREC;
 | |
|   a->sign  = MP_ZPOS;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_init.c */
 | |
| 
 | |
| /* Start: bn_mp_init_copy.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INIT_COPY_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* creates "a" then copies b into it */
 | |
| int mp_init_copy (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_init (a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   return mp_copy (b, a);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_init_copy.c */
 | |
| 
 | |
| /* Start: bn_mp_init_multi.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INIT_MULTI_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| #include <stdarg.h>
 | |
| 
 | |
| int mp_init_multi(mp_int *mp, ...)
 | |
| {
 | |
|     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
 | |
|     int n = 0;                 /* Number of ok inits */
 | |
|     mp_int* cur_arg = mp;
 | |
|     va_list args;
 | |
| 
 | |
|     va_start(args, mp);        /* init args to next argument from caller */
 | |
|     while (cur_arg != NULL) {
 | |
|         if (mp_init(cur_arg) != MP_OKAY) {
 | |
|             /* Oops - error! Back-track and mp_clear what we already
 | |
|                succeeded in init-ing, then return error.
 | |
|             */
 | |
|             va_list clean_args;
 | |
| 
 | |
|             /* end the current list */
 | |
|             va_end(args);
 | |
| 
 | |
|             /* now start cleaning up */
 | |
|             cur_arg = mp;
 | |
|             va_start(clean_args, mp);
 | |
|             while (n--) {
 | |
|                 mp_clear(cur_arg);
 | |
|                 cur_arg = va_arg(clean_args, mp_int*);
 | |
|             }
 | |
|             va_end(clean_args);
 | |
|             res = MP_MEM;
 | |
|             break;
 | |
|         }
 | |
|         n++;
 | |
|         cur_arg = va_arg(args, mp_int*);
 | |
|     }
 | |
|     va_end(args);
 | |
|     return res;                /* Assumed ok, if error flagged above. */
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_init_multi.c */
 | |
| 
 | |
| /* Start: bn_mp_init_set.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INIT_SET_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* initialize and set a digit */
 | |
| int mp_init_set (mp_int * a, mp_digit b)
 | |
| {
 | |
|   int err;
 | |
|   if ((err = mp_init(a)) != MP_OKAY) {
 | |
|      return err;
 | |
|   }
 | |
|   mp_set(a, b);
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_init_set.c */
 | |
| 
 | |
| /* Start: bn_mp_init_set_int.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INIT_SET_INT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* initialize and set a digit */
 | |
| int mp_init_set_int (mp_int * a, unsigned long b)
 | |
| {
 | |
|   int err;
 | |
|   if ((err = mp_init(a)) != MP_OKAY) {
 | |
|      return err;
 | |
|   }
 | |
|   return mp_set_int(a, b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_init_set_int.c */
 | |
| 
 | |
| /* Start: bn_mp_init_size.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INIT_SIZE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* init an mp_init for a given size */
 | |
| int mp_init_size (mp_int * a, int size)
 | |
| {
 | |
|   int x;
 | |
| 
 | |
|   /* pad size so there are always extra digits */
 | |
|   size += (MP_PREC * 2) - (size % MP_PREC);	
 | |
| 
 | |
|   /* alloc mem */
 | |
|   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
 | |
|   if (a->dp == NULL) {
 | |
|     return MP_MEM;
 | |
|   }
 | |
| 
 | |
|   /* set the members */
 | |
|   a->used  = 0;
 | |
|   a->alloc = size;
 | |
|   a->sign  = MP_ZPOS;
 | |
| 
 | |
|   /* zero the digits */
 | |
|   for (x = 0; x < size; x++) {
 | |
|       a->dp[x] = 0;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_init_size.c */
 | |
| 
 | |
| /* Start: bn_mp_invmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INVMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* hac 14.61, pp608 */
 | |
| int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   /* b cannot be negative */
 | |
|   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
| #ifdef BN_FAST_MP_INVMOD_C
 | |
|   /* if the modulus is odd we can use a faster routine instead */
 | |
|   if (mp_isodd (b) == 1) {
 | |
|     return fast_mp_invmod (a, b, c);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_INVMOD_SLOW_C
 | |
|   return mp_invmod_slow(a, b, c);
 | |
| #endif
 | |
| 
 | |
|   return MP_VAL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_invmod.c */
 | |
| 
 | |
| /* Start: bn_mp_invmod_slow.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_INVMOD_SLOW_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* hac 14.61, pp608 */
 | |
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x, y, u, v, A, B, C, D;
 | |
|   int     res;
 | |
| 
 | |
|   /* b cannot be negative */
 | |
|   if (b->sign == MP_NEG || mp_iszero(b) == 1) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* init temps */
 | |
|   if ((res = mp_init_multi(&x, &y, &u, &v,
 | |
|                            &A, &B, &C, &D, NULL)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* x = a, y = b */
 | |
|   if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (b, &y)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 2. [modified] if x,y are both even then return an error! */
 | |
|   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
 | |
|   if ((res = mp_copy (&x, &u)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   if ((res = mp_copy (&y, &v)) != MP_OKAY) {
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
|   mp_set (&A, 1);
 | |
|   mp_set (&D, 1);
 | |
| 
 | |
| top:
 | |
|   /* 4.  while u is even do */
 | |
|   while (mp_iseven (&u) == 1) {
 | |
|     /* 4.1 u = u/2 */
 | |
|     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 4.2 if A or B is odd then */
 | |
|     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
 | |
|       /* A = (A+y)/2, B = (B-x)/2 */
 | |
|       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* A = A/2, B = B/2 */
 | |
|     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 5.  while v is even do */
 | |
|   while (mp_iseven (&v) == 1) {
 | |
|     /* 5.1 v = v/2 */
 | |
|     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     /* 5.2 if C or D is odd then */
 | |
|     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
 | |
|       /* C = (C+y)/2, D = (D-x)/2 */
 | |
|       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|     }
 | |
|     /* C = C/2, D = D/2 */
 | |
|     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* 6.  if u >= v then */
 | |
|   if (mp_cmp (&u, &v) != MP_LT) {
 | |
|     /* u = u - v, A = A - C, B = B - D */
 | |
|     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   } else {
 | |
|     /* v - v - u, C = C - A, D = D - B */
 | |
|     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
 | |
|       goto LBL_ERR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if not zero goto step 4 */
 | |
|   if (mp_iszero (&u) == 0)
 | |
|     goto top;
 | |
| 
 | |
|   /* now a = C, b = D, gcd == g*v */
 | |
| 
 | |
|   /* if v != 1 then there is no inverse */
 | |
|   if (mp_cmp_d (&v, 1) != MP_EQ) {
 | |
|     res = MP_VAL;
 | |
|     goto LBL_ERR;
 | |
|   }
 | |
| 
 | |
|   /* if its too low */
 | |
|   while (mp_cmp_d(&C, 0) == MP_LT) {
 | |
|       if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* too big */
 | |
|   while (mp_cmp_mag(&C, b) != MP_LT) {
 | |
|       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* C is now the inverse */
 | |
|   mp_exch (&C, c);
 | |
|   res = MP_OKAY;
 | |
| LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_invmod_slow.c */
 | |
| 
 | |
| /* Start: bn_mp_is_square.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_IS_SQUARE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Check if remainders are possible squares - fast exclude non-squares */
 | |
| static const char rem_128[128] = {
 | |
|  0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
 | |
| };
 | |
| 
 | |
| static const char rem_105[105] = {
 | |
|  0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
 | |
|  0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
 | |
|  0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
 | |
|  0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,
 | |
|  1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
 | |
|  1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1
 | |
| };
 | |
| 
 | |
| /* Store non-zero to ret if arg is square, and zero if not */
 | |
| int mp_is_square(mp_int *arg,int *ret)
 | |
| {
 | |
|   int           res;
 | |
|   mp_digit      c;
 | |
|   mp_int        t;
 | |
|   unsigned long r;
 | |
| 
 | |
|   /* Default to Non-square :) */
 | |
|   *ret = MP_NO;
 | |
| 
 | |
|   if (arg->sign == MP_NEG) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* digits used?  (TSD) */
 | |
|   if (arg->used == 0) {
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* First check mod 128 (suppose that DIGIT_BIT is at least 7) */
 | |
|   if (rem_128[127 & DIGIT(arg,0)] == 1) {
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* Next check mod 105 (3*5*7) */
 | |
|   if ((res = mp_mod_d(arg,105,&c)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
|   if (rem_105[c] == 1) {
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init_set_int(&t,11L*13L*17L*19L*23L*29L*31L)) != MP_OKAY) {
 | |
|      return res;
 | |
|   }
 | |
|   if ((res = mp_mod(arg,&t,&t)) != MP_OKAY) {
 | |
|      goto ERR;
 | |
|   }
 | |
|   r = mp_get_int(&t);
 | |
|   /* Check for other prime modules, note it's not an ERROR but we must
 | |
|    * free "t" so the easiest way is to goto ERR.  We know that res
 | |
|    * is already equal to MP_OKAY from the mp_mod call
 | |
|    */
 | |
|   if ( (1L<<(r%11)) & 0x5C4L )             goto ERR;
 | |
|   if ( (1L<<(r%13)) & 0x9E4L )             goto ERR;
 | |
|   if ( (1L<<(r%17)) & 0x5CE8L )            goto ERR;
 | |
|   if ( (1L<<(r%19)) & 0x4F50CL )           goto ERR;
 | |
|   if ( (1L<<(r%23)) & 0x7ACCA0L )          goto ERR;
 | |
|   if ( (1L<<(r%29)) & 0xC2EDD0CL )         goto ERR;
 | |
|   if ( (1L<<(r%31)) & 0x6DE2B848L )        goto ERR;
 | |
| 
 | |
|   /* Final check - is sqr(sqrt(arg)) == arg ? */
 | |
|   if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
 | |
|      goto ERR;
 | |
|   }
 | |
|   if ((res = mp_sqr(&t,&t)) != MP_OKAY) {
 | |
|      goto ERR;
 | |
|   }
 | |
| 
 | |
|   *ret = (mp_cmp_mag(&t,arg) == MP_EQ) ? MP_YES : MP_NO;
 | |
| ERR:mp_clear(&t);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_is_square.c */
 | |
| 
 | |
| /* Start: bn_mp_jacobi.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_JACOBI_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes the jacobi c = (a | n) (or Legendre if n is prime)
 | |
|  * HAC pp. 73 Algorithm 2.149
 | |
|  */
 | |
| int mp_jacobi (mp_int * a, mp_int * p, int *c)
 | |
| {
 | |
|   mp_int  a1, p1;
 | |
|   int     k, s, r, res;
 | |
|   mp_digit residue;
 | |
| 
 | |
|   /* if p <= 0 return MP_VAL */
 | |
|   if (mp_cmp_d(p, 0) != MP_GT) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* step 1.  if a == 0, return 0 */
 | |
|   if (mp_iszero (a) == 1) {
 | |
|     *c = 0;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* step 2.  if a == 1, return 1 */
 | |
|   if (mp_cmp_d (a, 1) == MP_EQ) {
 | |
|     *c = 1;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* default */
 | |
|   s = 0;
 | |
| 
 | |
|   /* step 3.  write a = a1 * 2**k  */
 | |
|   if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&p1)) != MP_OKAY) {
 | |
|     goto LBL_A1;
 | |
|   }
 | |
| 
 | |
|   /* divide out larger power of two */
 | |
|   k = mp_cnt_lsb(&a1);
 | |
|   if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
 | |
|      goto LBL_P1;
 | |
|   }
 | |
| 
 | |
|   /* step 4.  if e is even set s=1 */
 | |
|   if ((k & 1) == 0) {
 | |
|     s = 1;
 | |
|   } else {
 | |
|     /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
 | |
|     residue = p->dp[0] & 7;
 | |
| 
 | |
|     if (residue == 1 || residue == 7) {
 | |
|       s = 1;
 | |
|     } else if (residue == 3 || residue == 5) {
 | |
|       s = -1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
 | |
|   if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
 | |
|     s = -s;
 | |
|   }
 | |
| 
 | |
|   /* if a1 == 1 we're done */
 | |
|   if (mp_cmp_d (&a1, 1) == MP_EQ) {
 | |
|     *c = s;
 | |
|   } else {
 | |
|     /* n1 = n mod a1 */
 | |
|     if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
 | |
|       goto LBL_P1;
 | |
|     }
 | |
|     if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
 | |
|       goto LBL_P1;
 | |
|     }
 | |
|     *c = s * r;
 | |
|   }
 | |
| 
 | |
|   /* done */
 | |
|   res = MP_OKAY;
 | |
| LBL_P1:mp_clear (&p1);
 | |
| LBL_A1:mp_clear (&a1);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_jacobi.c */
 | |
| 
 | |
| /* Start: bn_mp_karatsuba_mul.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_KARATSUBA_MUL_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* c = |a| * |b| using Karatsuba Multiplication using
 | |
|  * three half size multiplications
 | |
|  *
 | |
|  * Let B represent the radix [e.g. 2**DIGIT_BIT] and
 | |
|  * let n represent half of the number of digits in
 | |
|  * the min(a,b)
 | |
|  *
 | |
|  * a = a1 * B**n + a0
 | |
|  * b = b1 * B**n + b0
 | |
|  *
 | |
|  * Then, a * b =>
 | |
|    a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
 | |
|  *
 | |
|  * Note that a1b1 and a0b0 are used twice and only need to be
 | |
|  * computed once.  So in total three half size (half # of
 | |
|  * digit) multiplications are performed, a0b0, a1b1 and
 | |
|  * (a1+b1)(a0+b0)
 | |
|  *
 | |
|  * Note that a multiplication of half the digits requires
 | |
|  * 1/4th the number of single precision multiplications so in
 | |
|  * total after one call 25% of the single precision multiplications
 | |
|  * are saved.  Note also that the call to mp_mul can end up back
 | |
|  * in this function if the a0, a1, b0, or b1 are above the threshold.
 | |
|  * This is known as divide-and-conquer and leads to the famous
 | |
|  * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
 | |
|  * the standard O(N**2) that the baseline/comba methods use.
 | |
|  * Generally though the overhead of this method doesn't pay off
 | |
|  * until a certain size (N ~ 80) is reached.
 | |
|  */
 | |
| int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
 | |
|   int     B, err;
 | |
| 
 | |
|   /* default the return code to an error */
 | |
|   err = MP_MEM;
 | |
| 
 | |
|   /* min # of digits */
 | |
|   B = MIN (a->used, b->used);
 | |
| 
 | |
|   /* now divide in two */
 | |
|   B = B >> 1;
 | |
| 
 | |
|   /* init copy all the temps */
 | |
|   if (mp_init_size (&x0, B) != MP_OKAY)
 | |
|     goto ERR;
 | |
|   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | |
|     goto X0;
 | |
|   if (mp_init_size (&y0, B) != MP_OKAY)
 | |
|     goto X1;
 | |
|   if (mp_init_size (&y1, b->used - B) != MP_OKAY)
 | |
|     goto Y0;
 | |
| 
 | |
|   /* init temps */
 | |
|   if (mp_init_size (&t1, B * 2) != MP_OKAY)
 | |
|     goto Y1;
 | |
|   if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
 | |
|     goto T1;
 | |
|   if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
 | |
|     goto X0Y0;
 | |
| 
 | |
|   /* now shift the digits */
 | |
|   x0.used = y0.used = B;
 | |
|   x1.used = a->used - B;
 | |
|   y1.used = b->used - B;
 | |
| 
 | |
|   {
 | |
|     register int x;
 | |
|     register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
 | |
| 
 | |
|     /* we copy the digits directly instead of using higher level functions
 | |
|      * since we also need to shift the digits
 | |
|      */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     tmpx = x0.dp;
 | |
|     tmpy = y0.dp;
 | |
|     for (x = 0; x < B; x++) {
 | |
|       *tmpx++ = *tmpa++;
 | |
|       *tmpy++ = *tmpb++;
 | |
|     }
 | |
| 
 | |
|     tmpx = x1.dp;
 | |
|     for (x = B; x < a->used; x++) {
 | |
|       *tmpx++ = *tmpa++;
 | |
|     }
 | |
| 
 | |
|     tmpy = y1.dp;
 | |
|     for (x = B; x < b->used; x++) {
 | |
|       *tmpy++ = *tmpb++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* only need to clamp the lower words since by definition the
 | |
|    * upper words x1/y1 must have a known number of digits
 | |
|    */
 | |
|   mp_clamp (&x0);
 | |
|   mp_clamp (&y0);
 | |
| 
 | |
|   /* now calc the products x0y0 and x1y1 */
 | |
|   /* after this x0 is no longer required, free temp [x0==t2]! */
 | |
|   if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
 | |
|     goto X1Y1;          /* x0y0 = x0*y0 */
 | |
|   if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
 | |
|     goto X1Y1;          /* x1y1 = x1*y1 */
 | |
| 
 | |
|   /* now calc x1+x0 and y1+y0 */
 | |
|   if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x1 - x0 */
 | |
|   if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
 | |
|     goto X1Y1;          /* t2 = y1 - y0 */
 | |
|   if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x1 + x0) * (y1 + y0) */
 | |
| 
 | |
|   /* add x0y0 */
 | |
|   if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
 | |
|     goto X1Y1;          /* t2 = x0y0 + x1y1 */
 | |
|   if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
 | |
| 
 | |
|   /* shift by B */
 | |
|   if (mp_lshd (&t1, B) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
 | |
|   if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
 | |
|     goto X1Y1;          /* x1y1 = x1y1 << 2*B */
 | |
| 
 | |
|   if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + t1 */
 | |
|   if (mp_add (&t1, &x1y1, c) != MP_OKAY)
 | |
|     goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
 | |
| 
 | |
|   /* Algorithm succeeded set the return code to MP_OKAY */
 | |
|   err = MP_OKAY;
 | |
| 
 | |
| X1Y1:mp_clear (&x1y1);
 | |
| X0Y0:mp_clear (&x0y0);
 | |
| T1:mp_clear (&t1);
 | |
| Y1:mp_clear (&y1);
 | |
| Y0:mp_clear (&y0);
 | |
| X1:mp_clear (&x1);
 | |
| X0:mp_clear (&x0);
 | |
| ERR:
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_karatsuba_mul.c */
 | |
| 
 | |
| /* Start: bn_mp_karatsuba_sqr.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_KARATSUBA_SQR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Karatsuba squaring, computes b = a*a using three
 | |
|  * half size squarings
 | |
|  *
 | |
|  * See comments of karatsuba_mul for details.  It
 | |
|  * is essentially the same algorithm but merely
 | |
|  * tuned to perform recursive squarings.
 | |
|  */
 | |
| int mp_karatsuba_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  x0, x1, t1, t2, x0x0, x1x1;
 | |
|   int     B, err;
 | |
| 
 | |
|   err = MP_MEM;
 | |
| 
 | |
|   /* min # of digits */
 | |
|   B = a->used;
 | |
| 
 | |
|   /* now divide in two */
 | |
|   B = B >> 1;
 | |
| 
 | |
|   /* init copy all the temps */
 | |
|   if (mp_init_size (&x0, B) != MP_OKAY)
 | |
|     goto ERR;
 | |
|   if (mp_init_size (&x1, a->used - B) != MP_OKAY)
 | |
|     goto X0;
 | |
| 
 | |
|   /* init temps */
 | |
|   if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
 | |
|     goto X1;
 | |
|   if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
 | |
|     goto T1;
 | |
|   if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
 | |
|     goto T2;
 | |
|   if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
 | |
|     goto X0X0;
 | |
| 
 | |
|   {
 | |
|     register int x;
 | |
|     register mp_digit *dst, *src;
 | |
| 
 | |
|     src = a->dp;
 | |
| 
 | |
|     /* now shift the digits */
 | |
|     dst = x0.dp;
 | |
|     for (x = 0; x < B; x++) {
 | |
|       *dst++ = *src++;
 | |
|     }
 | |
| 
 | |
|     dst = x1.dp;
 | |
|     for (x = B; x < a->used; x++) {
 | |
|       *dst++ = *src++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   x0.used = B;
 | |
|   x1.used = a->used - B;
 | |
| 
 | |
|   mp_clamp (&x0);
 | |
| 
 | |
|   /* now calc the products x0*x0 and x1*x1 */
 | |
|   if (mp_sqr (&x0, &x0x0) != MP_OKAY)
 | |
|     goto X1X1;           /* x0x0 = x0*x0 */
 | |
|   if (mp_sqr (&x1, &x1x1) != MP_OKAY)
 | |
|     goto X1X1;           /* x1x1 = x1*x1 */
 | |
| 
 | |
|   /* now calc (x1+x0)**2 */
 | |
|   if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x1 - x0 */
 | |
|   if (mp_sqr (&t1, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
 | |
| 
 | |
|   /* add x0y0 */
 | |
|   if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
 | |
|     goto X1X1;           /* t2 = x0x0 + x1x1 */
 | |
|   if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
 | |
| 
 | |
|   /* shift by B */
 | |
|   if (mp_lshd (&t1, B) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
 | |
|   if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
 | |
|     goto X1X1;           /* x1x1 = x1x1 << 2*B */
 | |
| 
 | |
|   if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x0x0 + t1 */
 | |
|   if (mp_add (&t1, &x1x1, b) != MP_OKAY)
 | |
|     goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
 | |
| 
 | |
|   err = MP_OKAY;
 | |
| 
 | |
| X1X1:mp_clear (&x1x1);
 | |
| X0X0:mp_clear (&x0x0);
 | |
| T2:mp_clear (&t2);
 | |
| T1:mp_clear (&t1);
 | |
| X1:mp_clear (&x1);
 | |
| X0:mp_clear (&x0);
 | |
| ERR:
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_karatsuba_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_lcm.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_LCM_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes least common multiple as |a*b|/(a, b) */
 | |
| int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t1, t2;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* t1 = get the GCD of the two inputs */
 | |
|   if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) {
 | |
|     goto LBL_T;
 | |
|   }
 | |
| 
 | |
|   /* divide the smallest by the GCD */
 | |
|   if (mp_cmp_mag(a, b) == MP_LT) {
 | |
|      /* store quotient in t2 such that t2 * b is the LCM */
 | |
|      if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) {
 | |
|         goto LBL_T;
 | |
|      }
 | |
|      res = mp_mul(b, &t2, c);
 | |
|   } else {
 | |
|      /* store quotient in t2 such that t2 * a is the LCM */
 | |
|      if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) {
 | |
|         goto LBL_T;
 | |
|      }
 | |
|      res = mp_mul(a, &t2, c);
 | |
|   }
 | |
| 
 | |
|   /* fix the sign to positive */
 | |
|   c->sign = MP_ZPOS;
 | |
| 
 | |
| LBL_T:
 | |
|   mp_clear_multi (&t1, &t2, NULL);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_lcm.c */
 | |
| 
 | |
| /* Start: bn_mp_lshd.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_LSHD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* shift left a certain amount of digits */
 | |
| int mp_lshd (mp_int * a, int b)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   /* if its less than zero return */
 | |
|   if (b <= 0) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* grow to fit the new digits */
 | |
|   if (a->alloc < a->used + b) {
 | |
|      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_digit *top, *bottom;
 | |
| 
 | |
|     /* increment the used by the shift amount then copy upwards */
 | |
|     a->used += b;
 | |
| 
 | |
|     /* top */
 | |
|     top = a->dp + a->used - 1;
 | |
| 
 | |
|     /* base */
 | |
|     bottom = a->dp + a->used - 1 - b;
 | |
| 
 | |
|     /* much like mp_rshd this is implemented using a sliding window
 | |
|      * except the window goes the otherway around.  Copying from
 | |
|      * the bottom to the top.  see bn_mp_rshd.c for more info.
 | |
|      */
 | |
|     for (x = a->used - 1; x >= b; x--) {
 | |
|       *top-- = *bottom--;
 | |
|     }
 | |
| 
 | |
|     /* zero the lower digits */
 | |
|     top = a->dp;
 | |
|     for (x = 0; x < b; x++) {
 | |
|       *top++ = 0;
 | |
|     }
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_lshd.c */
 | |
| 
 | |
| /* Start: bn_mp_mod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* c = a mod b, 0 <= c < b */
 | |
| int
 | |
| mp_mod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if (t.sign != b->sign) {
 | |
|     res = mp_add (b, &t, c);
 | |
|   } else {
 | |
|     res = MP_OKAY;
 | |
|     mp_exch (&t, c);
 | |
|   }
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mod.c */
 | |
| 
 | |
| /* Start: bn_mp_mod_2d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MOD_2D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* calc a value mod 2**b */
 | |
| int
 | |
| mp_mod_2d (mp_int * a, int b, mp_int * c)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   /* if b is <= 0 then zero the int */
 | |
|   if (b <= 0) {
 | |
|     mp_zero (c);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* if the modulus is larger than the value than return */
 | |
|   if (b >= (int) (a->used * DIGIT_BIT)) {
 | |
|     res = mp_copy (a, c);
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* copy */
 | |
|   if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* zero digits above the last digit of the modulus */
 | |
|   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
 | |
|     c->dp[x] = 0;
 | |
|   }
 | |
|   /* clear the digit that is not completely outside/inside the modulus */
 | |
|   c->dp[b / DIGIT_BIT] &=
 | |
|     (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mod_2d.c */
 | |
| 
 | |
| /* Start: bn_mp_mod_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MOD_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| int
 | |
| mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
 | |
| {
 | |
|   return mp_div_d(a, b, NULL, c);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mod_d.c */
 | |
| 
 | |
| /* Start: bn_mp_montgomery_calc_normalization.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * shifts with subtractions when the result is greater than b.
 | |
|  *
 | |
|  * The method is slightly modified to shift B unconditionally upto just under
 | |
|  * the leading bit of b.  This saves alot of multiple precision shifting.
 | |
|  */
 | |
| int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, bits, res;
 | |
| 
 | |
|   /* how many bits of last digit does b use */
 | |
|   bits = mp_count_bits (b) % DIGIT_BIT;
 | |
| 
 | |
|   if (b->used > 1) {
 | |
|      if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   } else {
 | |
|      mp_set(a, 1);
 | |
|      bits = 1;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /* now compute C = A * B mod b */
 | |
|   for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
 | |
|     if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     if (mp_cmp_mag (a, b) != MP_LT) {
 | |
|       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
 | |
|         return res;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_montgomery_calc_normalization.c */
 | |
| 
 | |
| /* Start: bn_mp_montgomery_reduce.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MONTGOMERY_REDUCE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes xR**-1 == x (mod N) via Montgomery Reduction */
 | |
| int
 | |
| mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 | |
| {
 | |
|   int     ix, res, digs;
 | |
|   mp_digit mu;
 | |
| 
 | |
|   /* can the fast reduction [comba] method be used?
 | |
|    *
 | |
|    * Note that unlike in mul you're safely allowed *less*
 | |
|    * than the available columns [255 per default] since carries
 | |
|    * are fixed up in the inner loop.
 | |
|    */
 | |
|   digs = n->used * 2 + 1;
 | |
|   if ((digs < MP_WARRAY) &&
 | |
|       n->used <
 | |
|       (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_mp_montgomery_reduce (x, n, rho);
 | |
|   }
 | |
| 
 | |
|   /* grow the input as required */
 | |
|   if (x->alloc < digs) {
 | |
|     if ((res = mp_grow (x, digs)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   x->used = digs;
 | |
| 
 | |
|   for (ix = 0; ix < n->used; ix++) {
 | |
|     /* mu = ai * rho mod b
 | |
|      *
 | |
|      * The value of rho must be precalculated via
 | |
|      * montgomery_setup() such that
 | |
|      * it equals -1/n0 mod b this allows the
 | |
|      * following inner loop to reduce the
 | |
|      * input one digit at a time
 | |
|      */
 | |
|     mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
 | |
| 
 | |
|     /* a = a + mu * m * b**i */
 | |
|     {
 | |
|       register int iy;
 | |
|       register mp_digit *tmpn, *tmpx, u;
 | |
|       register mp_word r;
 | |
| 
 | |
|       /* alias for digits of the modulus */
 | |
|       tmpn = n->dp;
 | |
| 
 | |
|       /* alias for the digits of x [the input] */
 | |
|       tmpx = x->dp + ix;
 | |
| 
 | |
|       /* set the carry to zero */
 | |
|       u = 0;
 | |
| 
 | |
|       /* Multiply and add in place */
 | |
|       for (iy = 0; iy < n->used; iy++) {
 | |
|         /* compute product and sum */
 | |
|         r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
 | |
|                   ((mp_word) u) + ((mp_word) * tmpx);
 | |
| 
 | |
|         /* get carry */
 | |
|         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
| 
 | |
|         /* fix digit */
 | |
|         *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
 | |
|       }
 | |
|       /* At this point the ix'th digit of x should be zero */
 | |
| 
 | |
| 
 | |
|       /* propagate carries upwards as required*/
 | |
|       while (u) {
 | |
|         *tmpx   += u;
 | |
|         u        = *tmpx >> DIGIT_BIT;
 | |
|         *tmpx++ &= MP_MASK;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* at this point the n.used'th least
 | |
|    * significant digits of x are all zero
 | |
|    * which means we can shift x to the
 | |
|    * right by n.used digits and the
 | |
|    * residue is unchanged.
 | |
|    */
 | |
| 
 | |
|   /* x = x/b**n.used */
 | |
|   mp_clamp(x);
 | |
|   mp_rshd (x, n->used);
 | |
| 
 | |
|   /* if x >= n then x = x - n */
 | |
|   if (mp_cmp_mag (x, n) != MP_LT) {
 | |
|     return s_mp_sub (x, n, x);
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_montgomery_reduce.c */
 | |
| 
 | |
| /* Start: bn_mp_montgomery_setup.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MONTGOMERY_SETUP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* setups the montgomery reduction stuff */
 | |
| int
 | |
| mp_montgomery_setup (mp_int * n, mp_digit * rho)
 | |
| {
 | |
|   mp_digit x, b;
 | |
| 
 | |
| /* fast inversion mod 2**k
 | |
|  *
 | |
|  * Based on the fact that
 | |
|  *
 | |
|  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
 | |
|  *                    =>  2*X*A - X*X*A*A = 1
 | |
|  *                    =>  2*(1) - (1)     = 1
 | |
|  */
 | |
|   b = n->dp[0];
 | |
| 
 | |
|   if ((b & 1) == 0) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
 | |
| #if !defined(MP_8BIT)
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
 | |
| #endif
 | |
| #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
 | |
| #endif
 | |
| #ifdef MP_64BIT
 | |
|   x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
 | |
| #endif
 | |
| 
 | |
|   /* rho = -1/m mod b */
 | |
|   *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_montgomery_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_mul.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MUL_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* high level multiplication (handles sign) */
 | |
| int mp_mul (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, neg;
 | |
|   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
 | |
| 
 | |
|   /* use Toom-Cook? */
 | |
| #ifdef BN_MP_TOOM_MUL_C
 | |
|   if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
 | |
|     res = mp_toom_mul(a, b, c);
 | |
|   } else
 | |
| #endif
 | |
| #ifdef BN_MP_KARATSUBA_MUL_C
 | |
|   /* use Karatsuba? */
 | |
|   if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
 | |
|     res = mp_karatsuba_mul (a, b, c);
 | |
|   } else
 | |
| #endif
 | |
|   {
 | |
|     /* can we use the fast multiplier?
 | |
|      *
 | |
|      * The fast multiplier can be used if the output will
 | |
|      * have less than MP_WARRAY digits and the number of
 | |
|      * digits won't affect carry propagation
 | |
|      */
 | |
|     int     digs = a->used + b->used + 1;
 | |
| 
 | |
| #ifdef BN_FAST_S_MP_MUL_DIGS_C
 | |
|     if ((digs < MP_WARRAY) &&
 | |
|         MIN(a->used, b->used) <=
 | |
|         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|       res = fast_s_mp_mul_digs (a, b, c, digs);
 | |
|     } else
 | |
| #endif
 | |
| #ifdef BN_S_MP_MUL_DIGS_C
 | |
|       res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
 | |
| #else
 | |
|       res = MP_VAL;
 | |
| #endif
 | |
| 
 | |
|   }
 | |
|   c->sign = (c->used > 0) ? neg : MP_ZPOS;
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mul.c */
 | |
| 
 | |
| /* Start: bn_mp_mul_2.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MUL_2_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* b = a*2 */
 | |
| int mp_mul_2(mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     x, res, oldused;
 | |
| 
 | |
|   /* grow to accomodate result */
 | |
|   if (b->alloc < a->used + 1) {
 | |
|     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   oldused = b->used;
 | |
|   b->used = a->used;
 | |
| 
 | |
|   {
 | |
|     register mp_digit r, rr, *tmpa, *tmpb;
 | |
| 
 | |
|     /* alias for source */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* alias for dest */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* carry */
 | |
|     r = 0;
 | |
|     for (x = 0; x < a->used; x++) {
 | |
| 
 | |
|       /* get what will be the *next* carry bit from the
 | |
|        * MSB of the current digit
 | |
|        */
 | |
|       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
 | |
| 
 | |
|       /* now shift up this digit, add in the carry [from the previous] */
 | |
|       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
 | |
| 
 | |
|       /* copy the carry that would be from the source
 | |
|        * digit into the next iteration
 | |
|        */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* new leading digit? */
 | |
|     if (r != 0) {
 | |
|       /* add a MSB which is always 1 at this point */
 | |
|       *tmpb = 1;
 | |
|       ++(b->used);
 | |
|     }
 | |
| 
 | |
|     /* now zero any excess digits on the destination
 | |
|      * that we didn't write to
 | |
|      */
 | |
|     tmpb = b->dp + b->used;
 | |
|     for (x = b->used; x < oldused; x++) {
 | |
|       *tmpb++ = 0;
 | |
|     }
 | |
|   }
 | |
|   b->sign = a->sign;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mul_2.c */
 | |
| 
 | |
| /* Start: bn_mp_mul_2d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MUL_2D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* shift left by a certain bit count */
 | |
| int mp_mul_2d (mp_int * a, int b, mp_int * c)
 | |
| {
 | |
|   mp_digit d;
 | |
|   int      res;
 | |
| 
 | |
|   /* copy */
 | |
|   if (a != c) {
 | |
|      if ((res = mp_copy (a, c)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
 | |
|      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
 | |
|        return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* shift by as many digits in the bit count */
 | |
|   if (b >= (int)DIGIT_BIT) {
 | |
|     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* shift any bit count < DIGIT_BIT */
 | |
|   d = (mp_digit) (b % DIGIT_BIT);
 | |
|   if (d != 0) {
 | |
|     register mp_digit *tmpc, shift, mask, r, rr;
 | |
|     register int x;
 | |
| 
 | |
|     /* bitmask for carries */
 | |
|     mask = (((mp_digit)1) << d) - 1;
 | |
| 
 | |
|     /* shift for msbs */
 | |
|     shift = DIGIT_BIT - d;
 | |
| 
 | |
|     /* alias */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* carry */
 | |
|     r    = 0;
 | |
|     for (x = 0; x < c->used; x++) {
 | |
|       /* get the higher bits of the current word */
 | |
|       rr = (*tmpc >> shift) & mask;
 | |
| 
 | |
|       /* shift the current word and OR in the carry */
 | |
|       *tmpc = ((*tmpc << d) | r) & MP_MASK;
 | |
|       ++tmpc;
 | |
| 
 | |
|       /* set the carry to the carry bits of the current word */
 | |
|       r = rr;
 | |
|     }
 | |
| 
 | |
|     /* set final carry */
 | |
|     if (r != 0) {
 | |
|        c->dp[(c->used)++] = r;
 | |
|     }
 | |
|   }
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mul_2d.c */
 | |
| 
 | |
| /* Start: bn_mp_mul_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MUL_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* multiply by a digit */
 | |
| int
 | |
| mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_digit u, *tmpa, *tmpc;
 | |
|   mp_word  r;
 | |
|   int      ix, res, olduse;
 | |
| 
 | |
|   /* make sure c is big enough to hold a*b */
 | |
|   if (c->alloc < a->used + 1) {
 | |
|     if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* get the original destinations used count */
 | |
|   olduse = c->used;
 | |
| 
 | |
|   /* set the sign */
 | |
|   c->sign = a->sign;
 | |
| 
 | |
|   /* alias for a->dp [source] */
 | |
|   tmpa = a->dp;
 | |
| 
 | |
|   /* alias for c->dp [dest] */
 | |
|   tmpc = c->dp;
 | |
| 
 | |
|   /* zero carry */
 | |
|   u = 0;
 | |
| 
 | |
|   /* compute columns */
 | |
|   for (ix = 0; ix < a->used; ix++) {
 | |
|     /* compute product and carry sum for this term */
 | |
|     r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
 | |
| 
 | |
|     /* mask off higher bits to get a single digit */
 | |
|     *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* send carry into next iteration */
 | |
|     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|   }
 | |
| 
 | |
|   /* store final carry [if any] and increment ix offset  */
 | |
|   *tmpc++ = u;
 | |
|   ++ix;
 | |
| 
 | |
|   /* now zero digits above the top */
 | |
|   while (ix++ < olduse) {
 | |
|      *tmpc++ = 0;
 | |
|   }
 | |
| 
 | |
|   /* set used count */
 | |
|   c->used = a->used + 1;
 | |
|   mp_clamp(c);
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mul_d.c */
 | |
| 
 | |
| /* Start: bn_mp_mulmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_MULMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* d = a * b (mod c) */
 | |
| int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_mulmod.c */
 | |
| 
 | |
| /* Start: bn_mp_n_root.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_N_ROOT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* find the n'th root of an integer
 | |
|  *
 | |
|  * Result found such that (c)**b <= a and (c+1)**b > a
 | |
|  *
 | |
|  * This algorithm uses Newton's approximation
 | |
|  * x[i+1] = x[i] - f(x[i])/f'(x[i])
 | |
|  * which will find the root in log(N) time where
 | |
|  * each step involves a fair bit.  This is not meant to
 | |
|  * find huge roots [square and cube, etc].
 | |
|  */
 | |
| int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_int  t1, t2, t3;
 | |
|   int     res, neg;
 | |
| 
 | |
|   /* input must be positive if b is even */
 | |
|   if ((b & 1) == 0 && a->sign == MP_NEG) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t2)) != MP_OKAY) {
 | |
|     goto LBL_T1;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init (&t3)) != MP_OKAY) {
 | |
|     goto LBL_T2;
 | |
|   }
 | |
| 
 | |
|   /* if a is negative fudge the sign but keep track */
 | |
|   neg     = a->sign;
 | |
|   a->sign = MP_ZPOS;
 | |
| 
 | |
|   /* t2 = 2 */
 | |
|   mp_set (&t2, 2);
 | |
| 
 | |
|   do {
 | |
|     /* t1 = t2 */
 | |
|     if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
 | |
| 
 | |
|     /* t3 = t1**(b-1) */
 | |
|     if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* numerator */
 | |
|     /* t2 = t1**b */
 | |
|     if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* t2 = t1**b - a */
 | |
|     if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* denominator */
 | |
|     /* t3 = t1**(b-1) * b  */
 | |
|     if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     /* t3 = (t1**b - a)/(b * t1**(b-1)) */
 | |
|     if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
|   }  while (mp_cmp (&t1, &t2) != MP_EQ);
 | |
| 
 | |
|   /* result can be off by a few so check */
 | |
|   for (;;) {
 | |
|     if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
 | |
|       goto LBL_T3;
 | |
|     }
 | |
| 
 | |
|     if (mp_cmp (&t2, a) == MP_GT) {
 | |
|       if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
 | |
|          goto LBL_T3;
 | |
|       }
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* reset the sign of a first */
 | |
|   a->sign = neg;
 | |
| 
 | |
|   /* set the result */
 | |
|   mp_exch (&t1, c);
 | |
| 
 | |
|   /* set the sign of the result */
 | |
|   c->sign = neg;
 | |
| 
 | |
|   res = MP_OKAY;
 | |
| 
 | |
| LBL_T3:mp_clear (&t3);
 | |
| LBL_T2:mp_clear (&t2);
 | |
| LBL_T1:mp_clear (&t1);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_n_root.c */
 | |
| 
 | |
| /* Start: bn_mp_neg.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_NEG_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* b = -a */
 | |
| int mp_neg (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
|   if (a != b) {
 | |
|      if ((res = mp_copy (a, b)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   if (mp_iszero(b) != MP_YES) {
 | |
|      b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | |
|   } else {
 | |
|      b->sign = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_neg.c */
 | |
| 
 | |
| /* Start: bn_mp_or.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_OR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* OR two ints together */
 | |
| int mp_or (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, px;
 | |
|   mp_int  t, *x;
 | |
| 
 | |
|   if (a->used > b->used) {
 | |
|     if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = b->used;
 | |
|     x = b;
 | |
|   } else {
 | |
|     if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = a->used;
 | |
|     x = a;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < px; ix++) {
 | |
|     t.dp[ix] |= x->dp[ix];
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (c, &t);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_or.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_fermat.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_FERMAT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* performs one Fermat test.
 | |
|  *
 | |
|  * If "a" were prime then b**a == b (mod a) since the order of
 | |
|  * the multiplicative sub-group would be phi(a) = a-1.  That means
 | |
|  * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
 | |
|  *
 | |
|  * Sets result to 1 if the congruence holds, or zero otherwise.
 | |
|  */
 | |
| int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     err;
 | |
| 
 | |
|   /* default to composite  */
 | |
|   *result = MP_NO;
 | |
| 
 | |
|   /* ensure b > 1 */
 | |
|   if (mp_cmp_d(b, 1) != MP_GT) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* init t */
 | |
|   if ((err = mp_init (&t)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
| 
 | |
|   /* compute t = b**a mod a */
 | |
|   if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) {
 | |
|     goto LBL_T;
 | |
|   }
 | |
| 
 | |
|   /* is it equal to b? */
 | |
|   if (mp_cmp (&t, b) == MP_EQ) {
 | |
|     *result = MP_YES;
 | |
|   }
 | |
| 
 | |
|   err = MP_OKAY;
 | |
| LBL_T:mp_clear (&t);
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_fermat.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_is_divisible.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_IS_DIVISIBLE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines if an integers is divisible by one
 | |
|  * of the first PRIME_SIZE primes or not
 | |
|  *
 | |
|  * sets result to 0 if not, 1 if yes
 | |
|  */
 | |
| int mp_prime_is_divisible (mp_int * a, int *result)
 | |
| {
 | |
|   int     err, ix;
 | |
|   mp_digit res;
 | |
| 
 | |
|   /* default to not */
 | |
|   *result = MP_NO;
 | |
| 
 | |
|   for (ix = 0; ix < PRIME_SIZE; ix++) {
 | |
|     /* what is a mod LBL_prime_tab[ix] */
 | |
|     if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
 | |
|       return err;
 | |
|     }
 | |
| 
 | |
|     /* is the residue zero? */
 | |
|     if (res == 0) {
 | |
|       *result = MP_YES;
 | |
|       return MP_OKAY;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_is_divisible.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_is_prime.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_IS_PRIME_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* performs a variable number of rounds of Miller-Rabin
 | |
|  *
 | |
|  * Probability of error after t rounds is no more than
 | |
| 
 | |
|  *
 | |
|  * Sets result to 1 if probably prime, 0 otherwise
 | |
|  */
 | |
| int mp_prime_is_prime (mp_int * a, int t, int *result)
 | |
| {
 | |
|   mp_int  b;
 | |
|   int     ix, err, res;
 | |
| 
 | |
|   /* default to no */
 | |
|   *result = MP_NO;
 | |
| 
 | |
|   /* valid value of t? */
 | |
|   if (t <= 0 || t > PRIME_SIZE) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* is the input equal to one of the primes in the table? */
 | |
|   for (ix = 0; ix < PRIME_SIZE; ix++) {
 | |
|       if (mp_cmp_d(a, ltm_prime_tab[ix]) == MP_EQ) {
 | |
|          *result = 1;
 | |
|          return MP_OKAY;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   /* first perform trial division */
 | |
|   if ((err = mp_prime_is_divisible (a, &res)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
| 
 | |
|   /* return if it was trivially divisible */
 | |
|   if (res == MP_YES) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* now perform the miller-rabin rounds */
 | |
|   if ((err = mp_init (&b)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < t; ix++) {
 | |
|     /* set the prime */
 | |
|     mp_set (&b, ltm_prime_tab[ix]);
 | |
| 
 | |
|     if ((err = mp_prime_miller_rabin (a, &b, &res)) != MP_OKAY) {
 | |
|       goto LBL_B;
 | |
|     }
 | |
| 
 | |
|     if (res == MP_NO) {
 | |
|       goto LBL_B;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* passed the test */
 | |
|   *result = MP_YES;
 | |
| LBL_B:mp_clear (&b);
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_is_prime.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_miller_rabin.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_MILLER_RABIN_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Miller-Rabin test of "a" to the base of "b" as described in
 | |
|  * HAC pp. 139 Algorithm 4.24
 | |
|  *
 | |
|  * Sets result to 0 if definitely composite or 1 if probably prime.
 | |
|  * Randomly the chance of error is no more than 1/4 and often
 | |
|  * very much lower.
 | |
|  */
 | |
| int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
 | |
| {
 | |
|   mp_int  n1, y, r;
 | |
|   int     s, j, err;
 | |
| 
 | |
|   /* default */
 | |
|   *result = MP_NO;
 | |
| 
 | |
|   /* ensure b > 1 */
 | |
|   if (mp_cmp_d(b, 1) != MP_GT) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* get n1 = a - 1 */
 | |
|   if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
|   if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
 | |
|     goto LBL_N1;
 | |
|   }
 | |
| 
 | |
|   /* set 2**s * r = n1 */
 | |
|   if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
 | |
|     goto LBL_N1;
 | |
|   }
 | |
| 
 | |
|   /* count the number of least significant bits
 | |
|    * which are zero
 | |
|    */
 | |
|   s = mp_cnt_lsb(&r);
 | |
| 
 | |
|   /* now divide n - 1 by 2**s */
 | |
|   if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
 | |
|     goto LBL_R;
 | |
|   }
 | |
| 
 | |
|   /* compute y = b**r mod a */
 | |
|   if ((err = mp_init (&y)) != MP_OKAY) {
 | |
|     goto LBL_R;
 | |
|   }
 | |
|   if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
 | |
|     goto LBL_Y;
 | |
|   }
 | |
| 
 | |
|   /* if y != 1 and y != n1 do */
 | |
|   if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
 | |
|     j = 1;
 | |
|     /* while j <= s-1 and y != n1 */
 | |
|     while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
 | |
|       if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
 | |
|          goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       /* if y == 1 then composite */
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ) {
 | |
|          goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       ++j;
 | |
|     }
 | |
| 
 | |
|     /* if y != n1 then composite */
 | |
|     if (mp_cmp (&y, &n1) != MP_EQ) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* probably prime now */
 | |
|   *result = MP_YES;
 | |
| LBL_Y:mp_clear (&y);
 | |
| LBL_R:mp_clear (&r);
 | |
| LBL_N1:mp_clear (&n1);
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_miller_rabin.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_next_prime.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_NEXT_PRIME_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* finds the next prime after the number "a" using "t" trials
 | |
|  * of Miller-Rabin.
 | |
|  *
 | |
|  * bbs_style = 1 means the prime must be congruent to 3 mod 4
 | |
|  */
 | |
| int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
 | |
| {
 | |
|    int      err, res, x, y;
 | |
|    mp_digit res_tab[PRIME_SIZE], step, kstep;
 | |
|    mp_int   b;
 | |
| 
 | |
|    /* ensure t is valid */
 | |
|    if (t <= 0 || t > PRIME_SIZE) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* force positive */
 | |
|    a->sign = MP_ZPOS;
 | |
| 
 | |
|    /* simple algo if a is less than the largest prime in the table */
 | |
|    if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
 | |
|       /* find which prime it is bigger than */
 | |
|       for (x = PRIME_SIZE - 2; x >= 0; x--) {
 | |
|           if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
 | |
|              if (bbs_style == 1) {
 | |
|                 /* ok we found a prime smaller or
 | |
|                  * equal [so the next is larger]
 | |
|                  *
 | |
|                  * however, the prime must be
 | |
|                  * congruent to 3 mod 4
 | |
|                  */
 | |
|                 if ((ltm_prime_tab[x + 1] & 3) != 3) {
 | |
|                    /* scan upwards for a prime congruent to 3 mod 4 */
 | |
|                    for (y = x + 1; y < PRIME_SIZE; y++) {
 | |
|                        if ((ltm_prime_tab[y] & 3) == 3) {
 | |
|                           mp_set(a, ltm_prime_tab[y]);
 | |
|                           return MP_OKAY;
 | |
|                        }
 | |
|                    }
 | |
|                 }
 | |
|              } else {
 | |
|                 mp_set(a, ltm_prime_tab[x + 1]);
 | |
|                 return MP_OKAY;
 | |
|              }
 | |
|           }
 | |
|       }
 | |
|       /* at this point a maybe 1 */
 | |
|       if (mp_cmp_d(a, 1) == MP_EQ) {
 | |
|          mp_set(a, 2);
 | |
|          return MP_OKAY;
 | |
|       }
 | |
|       /* fall through to the sieve */
 | |
|    }
 | |
| 
 | |
|    /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
 | |
|    if (bbs_style == 1) {
 | |
|       kstep   = 4;
 | |
|    } else {
 | |
|       kstep   = 2;
 | |
|    }
 | |
| 
 | |
|    /* at this point we will use a combination of a sieve and Miller-Rabin */
 | |
| 
 | |
|    if (bbs_style == 1) {
 | |
|       /* if a mod 4 != 3 subtract the correct value to make it so */
 | |
|       if ((a->dp[0] & 3) != 3) {
 | |
|          if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
 | |
|       }
 | |
|    } else {
 | |
|       if (mp_iseven(a) == 1) {
 | |
|          /* force odd */
 | |
|          if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
 | |
|             return err;
 | |
|          }
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* generate the restable */
 | |
|    for (x = 1; x < PRIME_SIZE; x++) {
 | |
|       if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
 | |
|          return err;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* init temp used for Miller-Rabin Testing */
 | |
|    if ((err = mp_init(&b)) != MP_OKAY) {
 | |
|       return err;
 | |
|    }
 | |
| 
 | |
|    for (;;) {
 | |
|       /* skip to the next non-trivially divisible candidate */
 | |
|       step = 0;
 | |
|       do {
 | |
|          /* y == 1 if any residue was zero [e.g. cannot be prime] */
 | |
|          y     =  0;
 | |
| 
 | |
|          /* increase step to next candidate */
 | |
|          step += kstep;
 | |
| 
 | |
|          /* compute the new residue without using division */
 | |
|          for (x = 1; x < PRIME_SIZE; x++) {
 | |
|              /* add the step to each residue */
 | |
|              res_tab[x] += kstep;
 | |
| 
 | |
|              /* subtract the modulus [instead of using division] */
 | |
|              if (res_tab[x] >= ltm_prime_tab[x]) {
 | |
|                 res_tab[x]  -= ltm_prime_tab[x];
 | |
|              }
 | |
| 
 | |
|              /* set flag if zero */
 | |
|              if (res_tab[x] == 0) {
 | |
|                 y = 1;
 | |
|              }
 | |
|          }
 | |
|       } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
 | |
| 
 | |
|       /* add the step */
 | |
|       if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
 | |
|          goto LBL_ERR;
 | |
|       }
 | |
| 
 | |
|       /* if didn't pass sieve and step == MAX then skip test */
 | |
|       if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       /* is this prime? */
 | |
|       for (x = 0; x < t; x++) {
 | |
|           mp_set(&b, ltm_prime_tab[x]);
 | |
|           if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
 | |
|              goto LBL_ERR;
 | |
|           }
 | |
|           if (res == MP_NO) {
 | |
|              break;
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       if (res == MP_YES) {
 | |
|          break;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    err = MP_OKAY;
 | |
| LBL_ERR:
 | |
|    mp_clear(&b);
 | |
|    return err;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_next_prime.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_rabin_miller_trials.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| 
 | |
| static const struct {
 | |
|    int k, t;
 | |
| } sizes[] = {
 | |
| {   128,    28 },
 | |
| {   256,    16 },
 | |
| {   384,    10 },
 | |
| {   512,     7 },
 | |
| {   640,     6 },
 | |
| {   768,     5 },
 | |
| {   896,     4 },
 | |
| {  1024,     4 }
 | |
| };
 | |
| 
 | |
| /* returns # of RM trials required for a given bit size */
 | |
| int mp_prime_rabin_miller_trials(int size)
 | |
| {
 | |
|    int x;
 | |
| 
 | |
|    for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
 | |
|        if (sizes[x].k == size) {
 | |
|           return sizes[x].t;
 | |
|        } else if (sizes[x].k > size) {
 | |
|           return (x == 0) ? sizes[0].t : sizes[x - 1].t;
 | |
|        }
 | |
|    }
 | |
|    return sizes[x-1].t + 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_rabin_miller_trials.c */
 | |
| 
 | |
| /* Start: bn_mp_prime_random_ex.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_PRIME_RANDOM_EX_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* makes a truly random prime of a given size (bits),
 | |
|  *
 | |
|  * Flags are as follows:
 | |
|  *
 | |
|  *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 | |
|  *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 | |
|  *   LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
 | |
|  *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 | |
|  *
 | |
|  * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 | |
|  * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 | |
|  * so it can be NULL
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This is possibly the mother of all prime generation functions, muahahahahaha! */
 | |
| int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
 | |
| {
 | |
|    unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
 | |
|    int res, err, bsize, maskOR_msb_offset;
 | |
| 
 | |
|    /* sanity check the input */
 | |
|    if (size <= 1 || t <= 0) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
| 
 | |
|    /* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
 | |
|    if (flags & LTM_PRIME_SAFE) {
 | |
|       flags |= LTM_PRIME_BBS;
 | |
|    }
 | |
| 
 | |
|    /* calc the byte size */
 | |
|    bsize = (size>>3) + ((size&7)?1:0);
 | |
| 
 | |
|    /* we need a buffer of bsize bytes */
 | |
|    tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
 | |
|    if (tmp == NULL) {
 | |
|       return MP_MEM;
 | |
|    }
 | |
| 
 | |
|    /* calc the maskAND value for the MSbyte*/
 | |
|    maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
 | |
| 
 | |
|    /* calc the maskOR_msb */
 | |
|    maskOR_msb        = 0;
 | |
|    maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
 | |
|    if (flags & LTM_PRIME_2MSB_ON) {
 | |
|       maskOR_msb       |= 0x80 >> ((9 - size) & 7);
 | |
|    }
 | |
| 
 | |
|    /* get the maskOR_lsb */
 | |
|    maskOR_lsb         = 1;
 | |
|    if (flags & LTM_PRIME_BBS) {
 | |
|       maskOR_lsb     |= 3;
 | |
|    }
 | |
| 
 | |
|    do {
 | |
|       /* read the bytes */
 | |
|       if (cb(tmp, bsize, dat) != bsize) {
 | |
|          err = MP_VAL;
 | |
|          goto error;
 | |
|       }
 | |
| 
 | |
|       /* work over the MSbyte */
 | |
|       tmp[0]    &= maskAND;
 | |
|       tmp[0]    |= 1 << ((size - 1) & 7);
 | |
| 
 | |
|       /* mix in the maskORs */
 | |
|       tmp[maskOR_msb_offset]   |= maskOR_msb;
 | |
|       tmp[bsize-1]             |= maskOR_lsb;
 | |
| 
 | |
|       /* read it in */
 | |
|       if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY)     { goto error; }
 | |
| 
 | |
|       /* is it prime? */
 | |
|       if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)           { goto error; }
 | |
|       if (res == MP_NO) {
 | |
|          continue;
 | |
|       }
 | |
| 
 | |
|       if (flags & LTM_PRIME_SAFE) {
 | |
|          /* see if (a-1)/2 is prime */
 | |
|          if ((err = mp_sub_d(a, 1, a)) != MP_OKAY)                    { goto error; }
 | |
|          if ((err = mp_div_2(a, a)) != MP_OKAY)                       { goto error; }
 | |
| 
 | |
|          /* is it prime? */
 | |
|          if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY)        { goto error; }
 | |
|       }
 | |
|    } while (res == MP_NO);
 | |
| 
 | |
|    if (flags & LTM_PRIME_SAFE) {
 | |
|       /* restore a to the original value */
 | |
|       if ((err = mp_mul_2(a, a)) != MP_OKAY)                          { goto error; }
 | |
|       if ((err = mp_add_d(a, 1, a)) != MP_OKAY)                       { goto error; }
 | |
|    }
 | |
| 
 | |
|    err = MP_OKAY;
 | |
| error:
 | |
|    XFREE(tmp);
 | |
|    return err;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_prime_random_ex.c */
 | |
| 
 | |
| /* Start: bn_mp_radix_size.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_RADIX_SIZE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* returns size of ASCII reprensentation */
 | |
| int mp_radix_size (mp_int * a, int radix, int *size)
 | |
| {
 | |
|   int     res, digs;
 | |
|   mp_int  t;
 | |
|   mp_digit d;
 | |
| 
 | |
|   *size = 0;
 | |
| 
 | |
|   /* special case for binary */
 | |
|   if (radix == 2) {
 | |
|     *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* make sure the radix is in range */
 | |
|   if (radix < 2 || radix > 64) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   if (mp_iszero(a) == MP_YES) {
 | |
|     *size = 2;
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* digs is the digit count */
 | |
|   digs = 0;
 | |
| 
 | |
|   /* if it's negative add one for the sign */
 | |
|   if (a->sign == MP_NEG) {
 | |
|     ++digs;
 | |
|   }
 | |
| 
 | |
|   /* init a copy of the input */
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* force temp to positive */
 | |
|   t.sign = MP_ZPOS;
 | |
| 
 | |
|   /* fetch out all of the digits */
 | |
|   while (mp_iszero (&t) == MP_NO) {
 | |
|     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|     ++digs;
 | |
|   }
 | |
|   mp_clear (&t);
 | |
| 
 | |
|   /* return digs + 1, the 1 is for the NULL byte that would be required. */
 | |
|   *size = digs + 1;
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_radix_size.c */
 | |
| 
 | |
| /* Start: bn_mp_radix_smap.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_RADIX_SMAP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* chars used in radix conversions */
 | |
| const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_radix_smap.c */
 | |
| 
 | |
| /* Start: bn_mp_rand.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_RAND_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* makes a pseudo-random int of a given size */
 | |
| int
 | |
| mp_rand (mp_int * a, int digits)
 | |
| {
 | |
|   int     res;
 | |
|   mp_digit d;
 | |
| 
 | |
|   mp_zero (a);
 | |
|   if (digits <= 0) {
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   /* first place a random non-zero digit */
 | |
|   do {
 | |
|     d = ((mp_digit) abs (rand ())) & MP_MASK;
 | |
|   } while (d == 0);
 | |
| 
 | |
|   if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   while (--digits > 0) {
 | |
|     if ((res = mp_lshd (a, 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_rand.c */
 | |
| 
 | |
| /* Start: bn_mp_read_radix.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_READ_RADIX_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* read a string [ASCII] in a given radix */
 | |
| int mp_read_radix (mp_int * a, const char *str, int radix)
 | |
| {
 | |
|   int     y, res, neg;
 | |
|   char    ch;
 | |
| 
 | |
|   /* zero the digit bignum */
 | |
|   mp_zero(a);
 | |
| 
 | |
|   /* make sure the radix is ok */
 | |
|   if (radix < 2 || radix > 64) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if the leading digit is a
 | |
|    * minus set the sign to negative.
 | |
|    */
 | |
|   if (*str == '-') {
 | |
|     ++str;
 | |
|     neg = MP_NEG;
 | |
|   } else {
 | |
|     neg = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   /* set the integer to the default of zero */
 | |
|   mp_zero (a);
 | |
| 
 | |
|   /* process each digit of the string */
 | |
|   while (*str) {
 | |
|     /* if the radix < 36 the conversion is case insensitive
 | |
|      * this allows numbers like 1AB and 1ab to represent the same  value
 | |
|      * [e.g. in hex]
 | |
|      */
 | |
|     ch = (char) ((radix < 36) ? toupper ((int)*str) : *str);
 | |
|     for (y = 0; y < 64; y++) {
 | |
|       if (ch == mp_s_rmap[y]) {
 | |
|          break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* if the char was found in the map
 | |
|      * and is less than the given radix add it
 | |
|      * to the number, otherwise exit the loop.
 | |
|      */
 | |
|     if (y < radix) {
 | |
|       if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
 | |
|          return res;
 | |
|       }
 | |
|       if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) {
 | |
|          return res;
 | |
|       }
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|     ++str;
 | |
|   }
 | |
| 
 | |
|   /* set the sign only if a != 0 */
 | |
|   if (mp_iszero(a) != 1) {
 | |
|      a->sign = neg;
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_read_radix.c */
 | |
| 
 | |
| /* Start: bn_mp_read_signed_bin.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_READ_SIGNED_BIN_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* read signed bin, big endian, first byte is 0==positive or 1==negative */
 | |
| int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* read magnitude */
 | |
|   if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* first byte is 0 for positive, non-zero for negative */
 | |
|   if (b[0] == 0) {
 | |
|      a->sign = MP_ZPOS;
 | |
|   } else {
 | |
|      a->sign = MP_NEG;
 | |
|   }
 | |
| 
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_read_signed_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_read_unsigned_bin.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_READ_UNSIGNED_BIN_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* reads a unsigned char array, assumes the msb is stored first [big endian] */
 | |
| int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   /* make sure there are at least two digits */
 | |
|   if (a->alloc < 2) {
 | |
|      if ((res = mp_grow(a, 2)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* zero the int */
 | |
|   mp_zero (a);
 | |
| 
 | |
|   /* read the bytes in */
 | |
|   while (c-- > 0) {
 | |
|     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
| #ifndef MP_8BIT
 | |
|       a->dp[0] |= *b++;
 | |
|       a->used += 1;
 | |
| #else
 | |
|       a->dp[0] = (*b & MP_MASK);
 | |
|       a->dp[1] |= ((*b++ >> 7U) & 1);
 | |
|       a->used += 2;
 | |
| #endif
 | |
|   }
 | |
|   mp_clamp (a);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_read_unsigned_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* reduces x mod m, assumes 0 < x < m**2, mu is
 | |
|  * precomputed via mp_reduce_setup.
 | |
|  * From HAC pp.604 Algorithm 14.42
 | |
|  */
 | |
| int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
 | |
| {
 | |
|   mp_int  q;
 | |
|   int     res, um = m->used;
 | |
| 
 | |
|   /* q = x */
 | |
|   if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* q1 = x / b**(k-1)  */
 | |
|   mp_rshd (&q, um - 1);
 | |
| 
 | |
|   /* according to HAC this optimization is ok */
 | |
|   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
 | |
|     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   } else {
 | |
| #ifdef BN_S_MP_MUL_HIGH_DIGS_C
 | |
|     if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
| #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
 | |
|     if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
| #else
 | |
|     {
 | |
|       res = MP_VAL;
 | |
|       goto CLEANUP;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* q3 = q2 / b**(k+1) */
 | |
|   mp_rshd (&q, um + 1);
 | |
| 
 | |
|   /* x = x mod b**(k+1), quick (no division) */
 | |
|   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* q = q * m mod b**(k+1), quick (no division) */
 | |
|   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* x = x - q */
 | |
|   if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
 | |
|     goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* If x < 0, add b**(k+1) to it */
 | |
|   if (mp_cmp_d (x, 0) == MP_LT) {
 | |
|     mp_set (&q, 1);
 | |
|     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|     if ((res = mp_add (x, &q, x)) != MP_OKAY)
 | |
|       goto CLEANUP;
 | |
|   }
 | |
| 
 | |
|   /* Back off if it's too big */
 | |
|   while (mp_cmp (x, m) != MP_LT) {
 | |
|     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
 | |
|       goto CLEANUP;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| CLEANUP:
 | |
|   mp_clear (&q);
 | |
| 
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_2k.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_2K_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* reduces a modulo n where n is of the form 2**p - d */
 | |
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
 | |
| {
 | |
|    mp_int q;
 | |
|    int    p, res;
 | |
| 
 | |
|    if ((res = mp_init(&q)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    p = mp_count_bits(n);
 | |
| top:
 | |
|    /* q = a/2**p, a = a mod 2**p */
 | |
|    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
|    if (d != 1) {
 | |
|       /* q = q * d */
 | |
|       if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
 | |
|          goto ERR;
 | |
|       }
 | |
|    }
 | |
| 
 | |
|    /* a = a + q */
 | |
|    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
|    if (mp_cmp_mag(a, n) != MP_LT) {
 | |
|       s_mp_sub(a, n, a);
 | |
|       goto top;
 | |
|    }
 | |
| 
 | |
| ERR:
 | |
|    mp_clear(&q);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_2k.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_2k_l.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_2K_L_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* reduces a modulo n where n is of the form 2**p - d
 | |
|    This differs from reduce_2k since "d" can be larger
 | |
|    than a single digit.
 | |
| */
 | |
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
 | |
| {
 | |
|    mp_int q;
 | |
|    int    p, res;
 | |
| 
 | |
|    if ((res = mp_init(&q)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    p = mp_count_bits(n);
 | |
| top:
 | |
|    /* q = a/2**p, a = a mod 2**p */
 | |
|    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
|    /* q = q * d */
 | |
|    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
|    /* a = a + q */
 | |
|    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
|    if (mp_cmp_mag(a, n) != MP_LT) {
 | |
|       s_mp_sub(a, n, a);
 | |
|       goto top;
 | |
|    }
 | |
| 
 | |
| ERR:
 | |
|    mp_clear(&q);
 | |
|    return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_2k_l.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_2k_setup.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_2K_SETUP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines the setup value */
 | |
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
 | |
| {
 | |
|    int res, p;
 | |
|    mp_int tmp;
 | |
| 
 | |
|    if ((res = mp_init(&tmp)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    p = mp_count_bits(a);
 | |
|    if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
 | |
|       mp_clear(&tmp);
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
 | |
|       mp_clear(&tmp);
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    *d = tmp.dp[0];
 | |
|    mp_clear(&tmp);
 | |
|    return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_2k_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_2k_setup_l.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_2K_SETUP_L_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines the setup value */
 | |
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
 | |
| {
 | |
|    int    res;
 | |
|    mp_int tmp;
 | |
| 
 | |
|    if ((res = mp_init(&tmp)) != MP_OKAY) {
 | |
|       return res;
 | |
|    }
 | |
| 
 | |
|    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
|    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
 | |
|       goto ERR;
 | |
|    }
 | |
| 
 | |
| ERR:
 | |
|    mp_clear(&tmp);
 | |
|    return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_2k_setup_l.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_is_2k.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_IS_2K_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines if mp_reduce_2k can be used */
 | |
| int mp_reduce_is_2k(mp_int *a)
 | |
| {
 | |
|    int ix, iy, iw;
 | |
|    mp_digit iz;
 | |
| 
 | |
|    if (a->used == 0) {
 | |
|       return MP_NO;
 | |
|    } else if (a->used == 1) {
 | |
|       return MP_YES;
 | |
|    } else if (a->used > 1) {
 | |
|       iy = mp_count_bits(a);
 | |
|       iz = 1;
 | |
|       iw = 1;
 | |
| 
 | |
|       /* Test every bit from the second digit up, must be 1 */
 | |
|       for (ix = DIGIT_BIT; ix < iy; ix++) {
 | |
|           if ((a->dp[iw] & iz) == 0) {
 | |
|              return MP_NO;
 | |
|           }
 | |
|           iz <<= 1;
 | |
|           if (iz > (mp_digit)MP_MASK) {
 | |
|              ++iw;
 | |
|              iz = 1;
 | |
|           }
 | |
|       }
 | |
|    }
 | |
|    return MP_YES;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_is_2k.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_is_2k_l.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_IS_2K_L_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* determines if reduce_2k_l can be used */
 | |
| int mp_reduce_is_2k_l(mp_int *a)
 | |
| {
 | |
|    int ix, iy;
 | |
| 
 | |
|    if (a->used == 0) {
 | |
|       return MP_NO;
 | |
|    } else if (a->used == 1) {
 | |
|       return MP_YES;
 | |
|    } else if (a->used > 1) {
 | |
|       /* if more than half of the digits are -1 we're sold */
 | |
|       for (iy = ix = 0; ix < a->used; ix++) {
 | |
|           if (a->dp[ix] == MP_MASK) {
 | |
|               ++iy;
 | |
|           }
 | |
|       }
 | |
|       return (iy >= (a->used/2)) ? MP_YES : MP_NO;
 | |
| 
 | |
|    }
 | |
|    return MP_NO;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_is_2k_l.c */
 | |
| 
 | |
| /* Start: bn_mp_reduce_setup.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_REDUCE_SETUP_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* pre-calculate the value required for Barrett reduction
 | |
|  * For a given modulus "b" it calulates the value required in "a"
 | |
|  */
 | |
| int mp_reduce_setup (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   return mp_div (a, b, a, NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_reduce_setup.c */
 | |
| 
 | |
| /* Start: bn_mp_rshd.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_RSHD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* shift right a certain amount of digits */
 | |
| void mp_rshd (mp_int * a, int b)
 | |
| {
 | |
|   int     x;
 | |
| 
 | |
|   /* if b <= 0 then ignore it */
 | |
|   if (b <= 0) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   /* if b > used then simply zero it and return */
 | |
|   if (a->used <= b) {
 | |
|     mp_zero (a);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     register mp_digit *bottom, *top;
 | |
| 
 | |
|     /* shift the digits down */
 | |
| 
 | |
|     /* bottom */
 | |
|     bottom = a->dp;
 | |
| 
 | |
|     /* top [offset into digits] */
 | |
|     top = a->dp + b;
 | |
| 
 | |
|     /* this is implemented as a sliding window where
 | |
|      * the window is b-digits long and digits from
 | |
|      * the top of the window are copied to the bottom
 | |
|      *
 | |
|      * e.g.
 | |
| 
 | |
|      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
 | |
|                  /\                   |      ---->
 | |
|                   \-------------------/      ---->
 | |
|      */
 | |
|     for (x = 0; x < (a->used - b); x++) {
 | |
|       *bottom++ = *top++;
 | |
|     }
 | |
| 
 | |
|     /* zero the top digits */
 | |
|     for (; x < a->used; x++) {
 | |
|       *bottom++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* remove excess digits */
 | |
|   a->used -= b;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_rshd.c */
 | |
| 
 | |
| /* Start: bn_mp_set.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SET_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* set to a digit */
 | |
| void mp_set (mp_int * a, mp_digit b)
 | |
| {
 | |
|   mp_zero (a);
 | |
|   a->dp[0] = b & MP_MASK;
 | |
|   a->used  = (a->dp[0] != 0) ? 1 : 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_set.c */
 | |
| 
 | |
| /* Start: bn_mp_set_int.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SET_INT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* set a 32-bit const */
 | |
| int mp_set_int (mp_int * a, unsigned long b)
 | |
| {
 | |
|   int     x, res;
 | |
| 
 | |
|   mp_zero (a);
 | |
| 
 | |
|   /* set four bits at a time */
 | |
|   for (x = 0; x < 8; x++) {
 | |
|     /* shift the number up four bits */
 | |
|     if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     /* OR in the top four bits of the source */
 | |
|     a->dp[0] |= (b >> 28) & 15;
 | |
| 
 | |
|     /* shift the source up to the next four bits */
 | |
|     b <<= 4;
 | |
| 
 | |
|     /* ensure that digits are not clamped off */
 | |
|     a->used += 1;
 | |
|   }
 | |
|   mp_clamp (a);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_set_int.c */
 | |
| 
 | |
| /* Start: bn_mp_shrink.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SHRINK_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* shrink a bignum */
 | |
| int mp_shrink (mp_int * a)
 | |
| {
 | |
|   mp_digit *tmp;
 | |
|   int used = 1;
 | |
| 
 | |
|   if(a->used > 0)
 | |
|     used = a->used;
 | |
| 
 | |
|   if (a->alloc != used) {
 | |
|     if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
 | |
|       return MP_MEM;
 | |
|     }
 | |
|     a->dp    = tmp;
 | |
|     a->alloc = used;
 | |
|   }
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_shrink.c */
 | |
| 
 | |
| /* Start: bn_mp_signed_bin_size.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SIGNED_BIN_SIZE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* get the size for an signed equivalent */
 | |
| int mp_signed_bin_size (mp_int * a)
 | |
| {
 | |
|   return 1 + mp_unsigned_bin_size (a);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_signed_bin_size.c */
 | |
| 
 | |
| /* Start: bn_mp_sqr.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SQR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes b = a*a */
 | |
| int
 | |
| mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
| #ifdef BN_MP_TOOM_SQR_C
 | |
|   /* use Toom-Cook? */
 | |
|   if (a->used >= TOOM_SQR_CUTOFF) {
 | |
|     res = mp_toom_sqr(a, b);
 | |
|   /* Karatsuba? */
 | |
|   } else
 | |
| #endif
 | |
| #ifdef BN_MP_KARATSUBA_SQR_C
 | |
| if (a->used >= KARATSUBA_SQR_CUTOFF) {
 | |
|     res = mp_karatsuba_sqr (a, b);
 | |
|   } else
 | |
| #endif
 | |
|   {
 | |
| #ifdef BN_FAST_S_MP_SQR_C
 | |
|     /* can we use the fast comba multiplier? */
 | |
|     if ((a->used * 2 + 1) < MP_WARRAY &&
 | |
|          a->used <
 | |
|          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
 | |
|       res = fast_s_mp_sqr (a, b);
 | |
|     } else
 | |
| #endif
 | |
| #ifdef BN_S_MP_SQR_C
 | |
|       res = s_mp_sqr (a, b);
 | |
| #else
 | |
|       res = MP_VAL;
 | |
| #endif
 | |
|   }
 | |
|   b->sign = MP_ZPOS;
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_sqrmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SQRMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* c = a * a (mod b) */
 | |
| int
 | |
| mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_sqr (a, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, b, c);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_sqrmod.c */
 | |
| 
 | |
| /* Start: bn_mp_sqrt.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SQRT_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* this function is less generic than mp_n_root, simpler and faster */
 | |
| int mp_sqrt(mp_int *arg, mp_int *ret)
 | |
| {
 | |
|   int res;
 | |
|   mp_int t1,t2;
 | |
| 
 | |
|   /* must be positive */
 | |
|   if (arg->sign == MP_NEG) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* easy out */
 | |
|   if (mp_iszero(arg) == MP_YES) {
 | |
|     mp_zero(ret);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy(&t1, arg)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init(&t2)) != MP_OKAY) {
 | |
|     goto E2;
 | |
|   }
 | |
| 
 | |
|   /* First approx. (not very bad for large arg) */
 | |
|   mp_rshd (&t1,t1.used/2);
 | |
| 
 | |
|   /* t1 > 0  */
 | |
|   if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
 | |
|     goto E1;
 | |
|   }
 | |
|   if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
 | |
|     goto E1;
 | |
|   }
 | |
|   if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
 | |
|     goto E1;
 | |
|   }
 | |
|   /* And now t1 > sqrt(arg) */
 | |
|   do {
 | |
|     if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
 | |
|       goto E1;
 | |
|     }
 | |
|     if ((res = mp_add(&t1,&t2,&t1)) != MP_OKAY) {
 | |
|       goto E1;
 | |
|     }
 | |
|     if ((res = mp_div_2(&t1,&t1)) != MP_OKAY) {
 | |
|       goto E1;
 | |
|     }
 | |
|     /* t1 >= sqrt(arg) >= t2 at this point */
 | |
|   } while (mp_cmp_mag(&t1,&t2) == MP_GT);
 | |
| 
 | |
|   mp_exch(&t1,ret);
 | |
| 
 | |
| E1: mp_clear(&t2);
 | |
| E2: mp_clear(&t1);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_sqrt.c */
 | |
| 
 | |
| /* Start: bn_mp_sub.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SUB_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* high level subtraction (handles signs) */
 | |
| int
 | |
| mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     sa, sb, res;
 | |
| 
 | |
|   sa = a->sign;
 | |
|   sb = b->sign;
 | |
| 
 | |
|   if (sa != sb) {
 | |
|     /* subtract a negative from a positive, OR */
 | |
|     /* subtract a positive from a negative. */
 | |
|     /* In either case, ADD their magnitudes, */
 | |
|     /* and use the sign of the first number. */
 | |
|     c->sign = sa;
 | |
|     res = s_mp_add (a, b, c);
 | |
|   } else {
 | |
|     /* subtract a positive from a positive, OR */
 | |
|     /* subtract a negative from a negative. */
 | |
|     /* First, take the difference between their */
 | |
|     /* magnitudes, then... */
 | |
|     if (mp_cmp_mag (a, b) != MP_LT) {
 | |
|       /* Copy the sign from the first */
 | |
|       c->sign = sa;
 | |
|       /* The first has a larger or equal magnitude */
 | |
|       res = s_mp_sub (a, b, c);
 | |
|     } else {
 | |
|       /* The result has the *opposite* sign from */
 | |
|       /* the first number. */
 | |
|       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
 | |
|       /* The second has a larger magnitude */
 | |
|       res = s_mp_sub (b, a, c);
 | |
|     }
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_sub.c */
 | |
| 
 | |
| /* Start: bn_mp_sub_d.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SUB_D_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* single digit subtraction */
 | |
| int
 | |
| mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
 | |
| {
 | |
|   mp_digit *tmpa, *tmpc, mu;
 | |
|   int       res, ix, oldused;
 | |
| 
 | |
|   /* grow c as required */
 | |
|   if (c->alloc < a->used + 1) {
 | |
|      if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
 | |
|         return res;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* if a is negative just do an unsigned
 | |
|    * addition [with fudged signs]
 | |
|    */
 | |
|   if (a->sign == MP_NEG) {
 | |
|      a->sign = MP_ZPOS;
 | |
|      res     = mp_add_d(a, b, c);
 | |
|      a->sign = c->sign = MP_NEG;
 | |
| 
 | |
|      /* clamp */
 | |
|      mp_clamp(c);
 | |
| 
 | |
|      return res;
 | |
|   }
 | |
| 
 | |
|   /* setup regs */
 | |
|   oldused = c->used;
 | |
|   tmpa    = a->dp;
 | |
|   tmpc    = c->dp;
 | |
| 
 | |
|   /* if a <= b simply fix the single digit */
 | |
|   if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
 | |
|      if (a->used == 1) {
 | |
|         *tmpc++ = b - *tmpa;
 | |
|      } else {
 | |
|         *tmpc++ = b;
 | |
|      }
 | |
|      ix      = 1;
 | |
| 
 | |
|      /* negative/1digit */
 | |
|      c->sign = MP_NEG;
 | |
|      c->used = 1;
 | |
|   } else {
 | |
|      /* positive/size */
 | |
|      c->sign = MP_ZPOS;
 | |
|      c->used = a->used;
 | |
| 
 | |
|      /* subtract first digit */
 | |
|      *tmpc    = *tmpa++ - b;
 | |
|      mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
 | |
|      *tmpc++ &= MP_MASK;
 | |
| 
 | |
|      /* handle rest of the digits */
 | |
|      for (ix = 1; ix < a->used; ix++) {
 | |
|         *tmpc    = *tmpa++ - mu;
 | |
|         mu       = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
 | |
|         *tmpc++ &= MP_MASK;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* zero excess digits */
 | |
|   while (ix++ < oldused) {
 | |
|      *tmpc++ = 0;
 | |
|   }
 | |
|   mp_clamp(c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_sub_d.c */
 | |
| 
 | |
| /* Start: bn_mp_submod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_SUBMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* d = a - b (mod c) */
 | |
| int
 | |
| mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 | |
| {
 | |
|   int     res;
 | |
|   mp_int  t;
 | |
| 
 | |
| 
 | |
|   if ((res = mp_init (&t)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_sub (a, b, &t)) != MP_OKAY) {
 | |
|     mp_clear (&t);
 | |
|     return res;
 | |
|   }
 | |
|   res = mp_mod (&t, c, d);
 | |
|   mp_clear (&t);
 | |
|   return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_submod.c */
 | |
| 
 | |
| /* Start: bn_mp_to_signed_bin.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TO_SIGNED_BIN_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* store in signed [big endian] format */
 | |
| int mp_to_signed_bin (mp_int * a, unsigned char *b)
 | |
| {
 | |
|   int     res;
 | |
| 
 | |
|   if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_to_signed_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_to_signed_bin_n.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TO_SIGNED_BIN_N_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* store in signed [big endian] format */
 | |
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
 | |
| {
 | |
|    if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
|    *outlen = mp_signed_bin_size(a);
 | |
|    return mp_to_signed_bin(a, b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_to_signed_bin_n.c */
 | |
| 
 | |
| /* Start: bn_mp_to_unsigned_bin.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TO_UNSIGNED_BIN_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* store in unsigned [big endian] format */
 | |
| int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
 | |
| {
 | |
|   int     x, res;
 | |
|   mp_int  t;
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   x = 0;
 | |
|   while (mp_iszero (&t) == 0) {
 | |
| #ifndef MP_8BIT
 | |
|       b[x++] = (unsigned char) (t.dp[0] & 255);
 | |
| #else
 | |
|       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
 | |
| #endif
 | |
|     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   bn_reverse (b, x);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_to_unsigned_bin.c */
 | |
| 
 | |
| /* Start: bn_mp_to_unsigned_bin_n.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TO_UNSIGNED_BIN_N_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* store in unsigned [big endian] format */
 | |
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
 | |
| {
 | |
|    if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
 | |
|       return MP_VAL;
 | |
|    }
 | |
|    *outlen = mp_unsigned_bin_size(a);
 | |
|    return mp_to_unsigned_bin(a, b);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_to_unsigned_bin_n.c */
 | |
| 
 | |
| /* Start: bn_mp_toom_mul.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TOOM_MUL_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* multiplication using the Toom-Cook 3-way algorithm
 | |
|  *
 | |
|  * Much more complicated than Karatsuba but has a lower
 | |
|  * asymptotic running time of O(N**1.464).  This algorithm is
 | |
|  * only particularly useful on VERY large inputs
 | |
|  * (we're talking 1000s of digits here...).
 | |
| */
 | |
| int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
 | |
| {
 | |
|     mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
 | |
|     int res, B;
 | |
| 
 | |
|     /* init temps */
 | |
|     if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
 | |
|                              &a0, &a1, &a2, &b0, &b1,
 | |
|                              &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
 | |
|        return res;
 | |
|     }
 | |
| 
 | |
|     /* B */
 | |
|     B = MIN(a->used, b->used) / 3;
 | |
| 
 | |
|     /* a = a2 * B**2 + a1 * B + a0 */
 | |
|     if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy(a, &a1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a1, B);
 | |
|     mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
 | |
| 
 | |
|     if ((res = mp_copy(a, &a2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a2, B*2);
 | |
| 
 | |
|     /* b = b2 * B**2 + b1 * B + b0 */
 | |
|     if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy(b, &b1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&b1, B);
 | |
|     mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
 | |
| 
 | |
|     if ((res = mp_copy(b, &b2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&b2, B*2);
 | |
| 
 | |
|     /* w0 = a0*b0 */
 | |
|     if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* w4 = a2 * b2 */
 | |
|     if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
 | |
|     if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
 | |
|     if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
 | |
|     if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* now solve the matrix
 | |
| 
 | |
|        0  0  0  0  1
 | |
|        1  2  4  8  16
 | |
|        1  1  1  1  1
 | |
|        16 8  4  2  1
 | |
|        1  0  0  0  0
 | |
| 
 | |
|        using 12 subtractions, 4 shifts,
 | |
|               2 small divisions and 1 small multiplication
 | |
|      */
 | |
| 
 | |
|      /* r1 - r4 */
 | |
|      if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r0 */
 | |
|      if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/2 */
 | |
|      if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/2 */
 | |
|      if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r2 - r0 - r4 */
 | |
|      if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - 8r0 */
 | |
|      if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - 8r4 */
 | |
|      if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* 3r2 - r1 - r3 */
 | |
|      if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/3 */
 | |
|      if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/3 */
 | |
|      if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
| 
 | |
|      /* at this point shift W[n] by B*n */
 | |
|      if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
| 
 | |
|      if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
| 
 | |
| ERR:
 | |
|      mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
 | |
|                     &a0, &a1, &a2, &b0, &b1,
 | |
|                     &b2, &tmp1, &tmp2, NULL);
 | |
|      return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_toom_mul.c */
 | |
| 
 | |
| /* Start: bn_mp_toom_sqr.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TOOM_SQR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* squaring using Toom-Cook 3-way algorithm */
 | |
| int
 | |
| mp_toom_sqr(mp_int *a, mp_int *b)
 | |
| {
 | |
|     mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
 | |
|     int res, B;
 | |
| 
 | |
|     /* init temps */
 | |
|     if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
 | |
|        return res;
 | |
|     }
 | |
| 
 | |
|     /* B */
 | |
|     B = a->used / 3;
 | |
| 
 | |
|     /* a = a2 * B**2 + a1 * B + a0 */
 | |
|     if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_copy(a, &a1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a1, B);
 | |
|     mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
 | |
| 
 | |
|     if ((res = mp_copy(a, &a2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     mp_rshd(&a2, B*2);
 | |
| 
 | |
|     /* w0 = a0*a0 */
 | |
|     if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* w4 = a2 * a2 */
 | |
|     if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* w1 = (a2 + 2(a1 + 2a0))**2 */
 | |
|     if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* w3 = (a0 + 2(a1 + 2a2))**2 */
 | |
|     if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* w2 = (a2 + a1 + a0)**2 */
 | |
|     if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
|     if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
 | |
|        goto ERR;
 | |
|     }
 | |
| 
 | |
|     /* now solve the matrix
 | |
| 
 | |
|        0  0  0  0  1
 | |
|        1  2  4  8  16
 | |
|        1  1  1  1  1
 | |
|        16 8  4  2  1
 | |
|        1  0  0  0  0
 | |
| 
 | |
|        using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
 | |
|      */
 | |
| 
 | |
|      /* r1 - r4 */
 | |
|      if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r0 */
 | |
|      if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/2 */
 | |
|      if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/2 */
 | |
|      if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r2 - r0 - r4 */
 | |
|      if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - 8r0 */
 | |
|      if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - 8r4 */
 | |
|      if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* 3r2 - r1 - r3 */
 | |
|      if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1 - r2 */
 | |
|      if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3 - r2 */
 | |
|      if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r1/3 */
 | |
|      if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      /* r3/3 */
 | |
|      if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
| 
 | |
|      /* at this point shift W[n] by B*n */
 | |
|      if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
| 
 | |
|      if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
|      if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
 | |
|         goto ERR;
 | |
|      }
 | |
| 
 | |
| ERR:
 | |
|      mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
 | |
|      return res;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_toom_sqr.c */
 | |
| 
 | |
| /* Start: bn_mp_toradix.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TORADIX_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* stores a bignum as a ASCII string in a given radix (2..64) */
 | |
| int mp_toradix (mp_int * a, char *str, int radix)
 | |
| {
 | |
|   int     res, digs;
 | |
|   mp_int  t;
 | |
|   mp_digit d;
 | |
|   char   *_s = str;
 | |
| 
 | |
|   /* check range of the radix */
 | |
|   if (radix < 2 || radix > 64) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* quick out if its zero */
 | |
|   if (mp_iszero(a) == 1) {
 | |
|      *str++ = '0';
 | |
|      *str = '\0';
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* if it is negative output a - */
 | |
|   if (t.sign == MP_NEG) {
 | |
|     ++_s;
 | |
|     *str++ = '-';
 | |
|     t.sign = MP_ZPOS;
 | |
|   }
 | |
| 
 | |
|   digs = 0;
 | |
|   while (mp_iszero (&t) == 0) {
 | |
|     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|     *str++ = mp_s_rmap[d];
 | |
|     ++digs;
 | |
|   }
 | |
| 
 | |
|   /* reverse the digits of the string.  In this case _s points
 | |
|    * to the first digit [exluding the sign] of the number]
 | |
|    */
 | |
|   bn_reverse ((unsigned char *)_s, digs);
 | |
| 
 | |
|   /* append a NULL so the string is properly terminated */
 | |
|   *str = '\0';
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_toradix.c */
 | |
| 
 | |
| /* Start: bn_mp_toradix_n.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_TORADIX_N_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* stores a bignum as a ASCII string in a given radix (2..64)
 | |
|  *
 | |
|  * Stores upto maxlen-1 chars and always a NULL byte
 | |
|  */
 | |
| int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
 | |
| {
 | |
|   int     res, digs;
 | |
|   mp_int  t;
 | |
|   mp_digit d;
 | |
|   char   *_s = str;
 | |
| 
 | |
|   /* check range of the maxlen, radix */
 | |
|   if (maxlen < 2 || radix < 2 || radix > 64) {
 | |
|     return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* quick out if its zero */
 | |
|   if (mp_iszero(a) == MP_YES) {
 | |
|      *str++ = '0';
 | |
|      *str = '\0';
 | |
|      return MP_OKAY;
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* if it is negative output a - */
 | |
|   if (t.sign == MP_NEG) {
 | |
|     /* we have to reverse our digits later... but not the - sign!! */
 | |
|     ++_s;
 | |
| 
 | |
|     /* store the flag and mark the number as positive */
 | |
|     *str++ = '-';
 | |
|     t.sign = MP_ZPOS;
 | |
| 
 | |
|     /* subtract a char */
 | |
|     --maxlen;
 | |
|   }
 | |
| 
 | |
|   digs = 0;
 | |
|   while (mp_iszero (&t) == 0) {
 | |
|     if (--maxlen < 1) {
 | |
|        /* no more room */
 | |
|        break;
 | |
|     }
 | |
|     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
 | |
|       mp_clear (&t);
 | |
|       return res;
 | |
|     }
 | |
|     *str++ = mp_s_rmap[d];
 | |
|     ++digs;
 | |
|   }
 | |
| 
 | |
|   /* reverse the digits of the string.  In this case _s points
 | |
|    * to the first digit [exluding the sign] of the number
 | |
|    */
 | |
|   bn_reverse ((unsigned char *)_s, digs);
 | |
| 
 | |
|   /* append a NULL so the string is properly terminated */
 | |
|   *str = '\0';
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_toradix_n.c */
 | |
| 
 | |
| /* Start: bn_mp_unsigned_bin_size.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_UNSIGNED_BIN_SIZE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* get the size for an unsigned equivalent */
 | |
| int mp_unsigned_bin_size (mp_int * a)
 | |
| {
 | |
|   int     size = mp_count_bits (a);
 | |
|   return (size / 8 + ((size & 7) != 0 ? 1 : 0));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_unsigned_bin_size.c */
 | |
| 
 | |
| /* Start: bn_mp_xor.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_XOR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* XOR two ints together */
 | |
| int
 | |
| mp_xor (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     res, ix, px;
 | |
|   mp_int  t, *x;
 | |
| 
 | |
|   if (a->used > b->used) {
 | |
|     if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = b->used;
 | |
|     x = b;
 | |
|   } else {
 | |
|     if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|     px = a->used;
 | |
|     x = a;
 | |
|   }
 | |
| 
 | |
|   for (ix = 0; ix < px; ix++) {
 | |
|      t.dp[ix] ^= x->dp[ix];
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (c, &t);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_xor.c */
 | |
| 
 | |
| /* Start: bn_mp_zero.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_MP_ZERO_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* set to zero */
 | |
| void mp_zero (mp_int * a)
 | |
| {
 | |
|   int       n;
 | |
|   mp_digit *tmp;
 | |
| 
 | |
|   a->sign = MP_ZPOS;
 | |
|   a->used = 0;
 | |
| 
 | |
|   tmp = a->dp;
 | |
|   for (n = 0; n < a->alloc; n++) {
 | |
|      *tmp++ = 0;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_mp_zero.c */
 | |
| 
 | |
| /* Start: bn_prime_tab.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_PRIME_TAB_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| const mp_digit ltm_prime_tab[] = {
 | |
|   0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
 | |
|   0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
 | |
|   0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
 | |
|   0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
 | |
| #ifndef MP_8BIT
 | |
|   0x0083,
 | |
|   0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
 | |
|   0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
 | |
|   0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
 | |
|   0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
 | |
| 
 | |
|   0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
 | |
|   0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
 | |
|   0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
 | |
|   0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
 | |
|   0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
 | |
|   0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
 | |
|   0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
 | |
|   0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
 | |
| 
 | |
|   0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
 | |
|   0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
 | |
|   0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
 | |
|   0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
 | |
|   0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
 | |
|   0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
 | |
|   0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
 | |
|   0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
 | |
| 
 | |
|   0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
 | |
|   0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
 | |
|   0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
 | |
|   0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
 | |
|   0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
 | |
|   0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
 | |
|   0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
 | |
|   0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
 | |
| #endif
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_prime_tab.c */
 | |
| 
 | |
| /* Start: bn_reverse.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_REVERSE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* reverse an array, used for radix code */
 | |
| void
 | |
| bn_reverse (unsigned char *s, int len)
 | |
| {
 | |
|   int     ix, iy;
 | |
|   unsigned char t;
 | |
| 
 | |
|   ix = 0;
 | |
|   iy = len - 1;
 | |
|   while (ix < iy) {
 | |
|     t     = s[ix];
 | |
|     s[ix] = s[iy];
 | |
|     s[iy] = t;
 | |
|     ++ix;
 | |
|     --iy;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_reverse.c */
 | |
| 
 | |
| /* Start: bn_s_mp_add.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_ADD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* low level addition, based on HAC pp.594, Algorithm 14.7 */
 | |
| int
 | |
| s_mp_add (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   mp_int *x;
 | |
|   int     olduse, res, min, max;
 | |
| 
 | |
|   /* find sizes, we let |a| <= |b| which means we have to sort
 | |
|    * them.  "x" will point to the input with the most digits
 | |
|    */
 | |
|   if (a->used > b->used) {
 | |
|     min = b->used;
 | |
|     max = a->used;
 | |
|     x = a;
 | |
|   } else {
 | |
|     min = a->used;
 | |
|     max = b->used;
 | |
|     x = b;
 | |
|   }
 | |
| 
 | |
|   /* init result */
 | |
|   if (c->alloc < max + 1) {
 | |
|     if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* get old used digit count and set new one */
 | |
|   olduse = c->used;
 | |
|   c->used = max + 1;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | |
|     register int i;
 | |
| 
 | |
|     /* alias for digit pointers */
 | |
| 
 | |
|     /* first input */
 | |
|     tmpa = a->dp;
 | |
| 
 | |
|     /* second input */
 | |
|     tmpb = b->dp;
 | |
| 
 | |
|     /* destination */
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* zero the carry */
 | |
|     u = 0;
 | |
|     for (i = 0; i < min; i++) {
 | |
|       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
 | |
|       *tmpc = *tmpa++ + *tmpb++ + u;
 | |
| 
 | |
|       /* U = carry bit of T[i] */
 | |
|       u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | |
| 
 | |
|       /* take away carry bit from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* now copy higher words if any, that is in A+B
 | |
|      * if A or B has more digits add those in
 | |
|      */
 | |
|     if (min != max) {
 | |
|       for (; i < max; i++) {
 | |
|         /* T[i] = X[i] + U */
 | |
|         *tmpc = x->dp[i] + u;
 | |
| 
 | |
|         /* U = carry bit of T[i] */
 | |
|         u = *tmpc >> ((mp_digit)DIGIT_BIT);
 | |
| 
 | |
|         /* take away carry bit from T[i] */
 | |
|         *tmpc++ &= MP_MASK;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* add carry */
 | |
|     *tmpc++ = u;
 | |
| 
 | |
|     /* clear digits above oldused */
 | |
|     for (i = c->used; i < olduse; i++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_s_mp_add.c */
 | |
| 
 | |
| /* Start: bn_s_mp_exptmod.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_EXPTMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| #ifdef MP_LOW_MEM
 | |
|    #define TAB_SIZE 32
 | |
| #else
 | |
|    #define TAB_SIZE 256
 | |
| #endif
 | |
| 
 | |
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[TAB_SIZE], res, mu;
 | |
|   mp_digit buf;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
|   int (*redux)(mp_int*,mp_int*,mp_int*);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|     if (winsize > 5) {
 | |
|        winsize = 5;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   /* init first cell */
 | |
|   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | |
|      return err;
 | |
|   }
 | |
| 
 | |
|   /* now init the second half of the array */
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | |
|       for (y = 1<<(winsize-1); y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       mp_clear(&M[1]);
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create mu, used for Barrett reduction */
 | |
|   if ((err = mp_init (&mu)) != MP_OKAY) {
 | |
|     goto LBL_M;
 | |
|   }
 | |
| 
 | |
|   if (redmode == 0) {
 | |
|      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
 | |
|         goto LBL_MU;
 | |
|      }
 | |
|      redux = mp_reduce;
 | |
|   } else {
 | |
|      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_MU;
 | |
|      }
 | |
|      redux = mp_reduce_2k_l;
 | |
|   }
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
|    * The M table contains powers of the base,
 | |
|    * e.g. M[x] = G**x mod P
 | |
|    *
 | |
|    * The first half of the table is not
 | |
|    * computed though accept for M[0] and M[1]
 | |
|    */
 | |
|   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring
 | |
|    * M[1] (winsize-1) times
 | |
|    */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     /* square it */
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)],
 | |
|                        &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
| 
 | |
|     /* reduce modulo P */
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | |
|    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
 | |
|    */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
 | |
|       goto LBL_MU;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto LBL_MU;
 | |
|   }
 | |
|   mp_set (&res, 1);
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       /* if digidx == -1 we are out of digits */
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       /* read next digit and reset the bitcnt */
 | |
|       buf    = X->dp[digidx--];
 | |
|       bitcnt = (int) DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if (mode == 0 && y == 0) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if (mode == 1 && y == 0) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode    = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode   = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if (mode == 2 && bitcpy > 0) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, &mu)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| LBL_RES:mp_clear (&res);
 | |
| LBL_MU:mp_clear (&mu);
 | |
| LBL_M:
 | |
|   mp_clear(&M[1]);
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_s_mp_exptmod.c */
 | |
| 
 | |
| /* Start: bn_s_mp_mul_digs.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_MUL_DIGS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* multiplies |a| * |b| and only computes upto digs digits of result
 | |
|  * HAC pp. 595, Algorithm 14.12  Modified so you can control how
 | |
|  * many digits of output are created.
 | |
|  */
 | |
| int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, pa, pb, ix, iy;
 | |
|   mp_digit u;
 | |
|   mp_word r;
 | |
|   mp_digit tmpx, *tmpt, *tmpy;
 | |
| 
 | |
|   /* can we use the fast multiplier? */
 | |
|   if (((digs) < MP_WARRAY) &&
 | |
|       MIN (a->used, b->used) <
 | |
|           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_s_mp_mul_digs (a, b, c, digs);
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = digs;
 | |
| 
 | |
|   /* compute the digits of the product directly */
 | |
|   pa = a->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* set the carry to zero */
 | |
|     u = 0;
 | |
| 
 | |
|     /* limit ourselves to making digs digits of output */
 | |
|     pb = MIN (b->used, digs - ix);
 | |
| 
 | |
|     /* setup some aliases */
 | |
|     /* copy of the digit from a used within the nested loop */
 | |
|     tmpx = a->dp[ix];
 | |
| 
 | |
|     /* an alias for the destination shifted ix places */
 | |
|     tmpt = t.dp + ix;
 | |
| 
 | |
|     /* an alias for the digits of b */
 | |
|     tmpy = b->dp;
 | |
| 
 | |
|     /* compute the columns of the output and propagate the carry */
 | |
|     for (iy = 0; iy < pb; iy++) {
 | |
|       /* compute the column as a mp_word */
 | |
|       r       = ((mp_word)*tmpt) +
 | |
|                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | |
|                 ((mp_word) u);
 | |
| 
 | |
|       /* the new column is the lower part of the result */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* get the carry word from the result */
 | |
|       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* set carry if it is placed below digs */
 | |
|     if (ix + iy < digs) {
 | |
|       *tmpt = u;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, c);
 | |
| 
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_s_mp_mul_digs.c */
 | |
| 
 | |
| /* Start: bn_s_mp_mul_high_digs.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_MUL_HIGH_DIGS_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* multiplies |a| * |b| and does not compute the lower digs digits
 | |
|  * [meant to get the higher part of the product]
 | |
|  */
 | |
| int
 | |
| s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, pa, pb, ix, iy;
 | |
|   mp_digit u;
 | |
|   mp_word r;
 | |
|   mp_digit tmpx, *tmpt, *tmpy;
 | |
| 
 | |
|   /* can we use the fast multiplier? */
 | |
| #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
 | |
|   if (((a->used + b->used + 1) < MP_WARRAY)
 | |
|       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
 | |
|     return fast_s_mp_mul_high_digs (a, b, c, digs);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
|   t.used = a->used + b->used + 1;
 | |
| 
 | |
|   pa = a->used;
 | |
|   pb = b->used;
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* clear the carry */
 | |
|     u = 0;
 | |
| 
 | |
|     /* left hand side of A[ix] * B[iy] */
 | |
|     tmpx = a->dp[ix];
 | |
| 
 | |
|     /* alias to the address of where the digits will be stored */
 | |
|     tmpt = &(t.dp[digs]);
 | |
| 
 | |
|     /* alias for where to read the right hand side from */
 | |
|     tmpy = b->dp + (digs - ix);
 | |
| 
 | |
|     for (iy = digs - ix; iy < pb; iy++) {
 | |
|       /* calculate the double precision result */
 | |
|       r       = ((mp_word)*tmpt) +
 | |
|                 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
 | |
|                 ((mp_word) u);
 | |
| 
 | |
|       /* get the lower part */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* carry the carry */
 | |
|       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     *tmpt = u;
 | |
|   }
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, c);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_s_mp_mul_high_digs.c */
 | |
| 
 | |
| /* Start: bn_s_mp_sqr.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_SQR_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
 | |
| int s_mp_sqr (mp_int * a, mp_int * b)
 | |
| {
 | |
|   mp_int  t;
 | |
|   int     res, ix, iy, pa;
 | |
|   mp_word r;
 | |
|   mp_digit u, tmpx, *tmpt;
 | |
| 
 | |
|   pa = a->used;
 | |
|   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* default used is maximum possible size */
 | |
|   t.used = 2*pa + 1;
 | |
| 
 | |
|   for (ix = 0; ix < pa; ix++) {
 | |
|     /* first calculate the digit at 2*ix */
 | |
|     /* calculate double precision result */
 | |
|     r = ((mp_word) t.dp[2*ix]) +
 | |
|         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 | |
| 
 | |
|     /* store lower part in result */
 | |
|     t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|     /* get the carry */
 | |
|     u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
| 
 | |
|     /* left hand side of A[ix] * A[iy] */
 | |
|     tmpx        = a->dp[ix];
 | |
| 
 | |
|     /* alias for where to store the results */
 | |
|     tmpt        = t.dp + (2*ix + 1);
 | |
| 
 | |
|     for (iy = ix + 1; iy < pa; iy++) {
 | |
|       /* first calculate the product */
 | |
|       r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 | |
| 
 | |
|       /* now calculate the double precision result, note we use
 | |
|        * addition instead of *2 since it's easier to optimize
 | |
|        */
 | |
|       r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
 | |
| 
 | |
|       /* store lower part */
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
| 
 | |
|       /* get carry */
 | |
|       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|     /* propagate upwards */
 | |
|     while (u != ((mp_digit) 0)) {
 | |
|       r       = ((mp_word) *tmpt) + ((mp_word) u);
 | |
|       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
 | |
|       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (&t);
 | |
|   mp_exch (&t, b);
 | |
|   mp_clear (&t);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_s_mp_sqr.c */
 | |
| 
 | |
| /* Start: bn_s_mp_sub.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BN_S_MP_SUB_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
 | |
| int
 | |
| s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
 | |
| {
 | |
|   int     olduse, res, min, max;
 | |
| 
 | |
|   /* find sizes */
 | |
|   min = b->used;
 | |
|   max = a->used;
 | |
| 
 | |
|   /* init result */
 | |
|   if (c->alloc < max) {
 | |
|     if ((res = mp_grow (c, max)) != MP_OKAY) {
 | |
|       return res;
 | |
|     }
 | |
|   }
 | |
|   olduse = c->used;
 | |
|   c->used = max;
 | |
| 
 | |
|   {
 | |
|     register mp_digit u, *tmpa, *tmpb, *tmpc;
 | |
|     register int i;
 | |
| 
 | |
|     /* alias for digit pointers */
 | |
|     tmpa = a->dp;
 | |
|     tmpb = b->dp;
 | |
|     tmpc = c->dp;
 | |
| 
 | |
|     /* set carry to zero */
 | |
|     u = 0;
 | |
|     for (i = 0; i < min; i++) {
 | |
|       /* T[i] = A[i] - B[i] - U */
 | |
|       *tmpc = *tmpa++ - *tmpb++ - u;
 | |
| 
 | |
|       /* U = carry bit of T[i]
 | |
|        * Note this saves performing an AND operation since
 | |
|        * if a carry does occur it will propagate all the way to the
 | |
|        * MSB.  As a result a single shift is enough to get the carry
 | |
|        */
 | |
|       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | |
| 
 | |
|       /* Clear carry from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* now copy higher words if any, e.g. if A has more digits than B  */
 | |
|     for (; i < max; i++) {
 | |
|       /* T[i] = A[i] - U */
 | |
|       *tmpc = *tmpa++ - u;
 | |
| 
 | |
|       /* U = carry bit of T[i] */
 | |
|       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
 | |
| 
 | |
|       /* Clear carry from T[i] */
 | |
|       *tmpc++ &= MP_MASK;
 | |
|     }
 | |
| 
 | |
|     /* clear digits above used (since we may not have grown result above) */
 | |
|     for (i = c->used; i < olduse; i++) {
 | |
|       *tmpc++ = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   mp_clamp (c);
 | |
|   return MP_OKAY;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bn_s_mp_sub.c */
 | |
| 
 | |
| /* Start: bncore.c */
 | |
| #include <tommath.h>
 | |
| #ifdef BNCORE_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Known optimal configurations
 | |
| 
 | |
|  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
 | |
| -------------------------------------------------------------
 | |
|  Intel P4 Northwood     /GCC v3.4.1   /        88/       128/LTM 0.32 ;-)
 | |
|  AMD Athlon64           /GCC v3.4.4   /        80/       120/LTM 0.35
 | |
| 
 | |
| */
 | |
| 
 | |
| int     KARATSUBA_MUL_CUTOFF = 80,      /* Min. number of digits before Karatsuba multiplication is used. */
 | |
|         KARATSUBA_SQR_CUTOFF = 120,     /* Min. number of digits before Karatsuba squaring is used. */
 | |
| 
 | |
|         TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
 | |
|         TOOM_SQR_CUTOFF      = 400;
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 | |
| 
 | |
| /* End: bncore.c */
 | |
| 
 | |
| 
 | |
| /* EOF */
 |