104 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_PRIME_MILLER_RABIN_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* Miller-Rabin test of "a" to the base of "b" as described in 
 | |
|  * HAC pp. 139 Algorithm 4.24
 | |
|  *
 | |
|  * Sets result to 0 if definitely composite or 1 if probably prime.
 | |
|  * Randomly the chance of error is no more than 1/4 and often 
 | |
|  * very much lower.
 | |
|  */
 | |
| int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
 | |
| {
 | |
|   mp_int  n1, y, r;
 | |
|   int     s, j, err;
 | |
| 
 | |
|   /* default */
 | |
|   *result = MP_NO;
 | |
| 
 | |
|   /* ensure b > 1 */
 | |
|   if (mp_cmp_d(b, 1) != MP_GT) {
 | |
|      return MP_VAL;
 | |
|   }     
 | |
| 
 | |
|   /* get n1 = a - 1 */
 | |
|   if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
 | |
|     return err;
 | |
|   }
 | |
|   if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
 | |
|     goto LBL_N1;
 | |
|   }
 | |
| 
 | |
|   /* set 2**s * r = n1 */
 | |
|   if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
 | |
|     goto LBL_N1;
 | |
|   }
 | |
| 
 | |
|   /* count the number of least significant bits
 | |
|    * which are zero
 | |
|    */
 | |
|   s = mp_cnt_lsb(&r);
 | |
| 
 | |
|   /* now divide n - 1 by 2**s */
 | |
|   if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
 | |
|     goto LBL_R;
 | |
|   }
 | |
| 
 | |
|   /* compute y = b**r mod a */
 | |
|   if ((err = mp_init (&y)) != MP_OKAY) {
 | |
|     goto LBL_R;
 | |
|   }
 | |
|   if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
 | |
|     goto LBL_Y;
 | |
|   }
 | |
| 
 | |
|   /* if y != 1 and y != n1 do */
 | |
|   if ((mp_cmp_d (&y, 1) != MP_EQ) && (mp_cmp (&y, &n1) != MP_EQ)) {
 | |
|     j = 1;
 | |
|     /* while j <= s-1 and y != n1 */
 | |
|     while ((j <= (s - 1)) && (mp_cmp (&y, &n1) != MP_EQ)) {
 | |
|       if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
 | |
|          goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       /* if y == 1 then composite */
 | |
|       if (mp_cmp_d (&y, 1) == MP_EQ) {
 | |
|          goto LBL_Y;
 | |
|       }
 | |
| 
 | |
|       ++j;
 | |
|     }
 | |
| 
 | |
|     /* if y != n1 then composite */
 | |
|     if (mp_cmp (&y, &n1) != MP_EQ) {
 | |
|       goto LBL_Y;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* probably prime now */
 | |
|   *result = MP_YES;
 | |
| LBL_Y:mp_clear (&y);
 | |
| LBL_R:mp_clear (&r);
 | |
| LBL_N1:mp_clear (&n1);
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 |