113 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_EXPTMOD_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* this is a shell function that calls either the normal or Montgomery
 | |
|  * exptmod functions.  Originally the call to the montgomery code was
 | |
|  * embedded in the normal function but that wasted alot of stack space
 | |
|  * for nothing (since 99% of the time the Montgomery code would be called)
 | |
|  */
 | |
| int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 | |
| {
 | |
|   int dr;
 | |
| 
 | |
|   /* modulus P must be positive */
 | |
|   if (P->sign == MP_NEG) {
 | |
|      return MP_VAL;
 | |
|   }
 | |
| 
 | |
|   /* if exponent X is negative we have to recurse */
 | |
|   if (X->sign == MP_NEG) {
 | |
| #ifdef BN_MP_INVMOD_C
 | |
|      mp_int tmpG, tmpX;
 | |
|      int err;
 | |
| 
 | |
|      /* first compute 1/G mod P */
 | |
|      if ((err = mp_init(&tmpG)) != MP_OKAY) {
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* now get |X| */
 | |
|      if ((err = mp_init(&tmpX)) != MP_OKAY) {
 | |
|         mp_clear(&tmpG);
 | |
|         return err;
 | |
|      }
 | |
|      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
 | |
|         mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|         return err;
 | |
|      }
 | |
| 
 | |
|      /* and now compute (1/G)**|X| instead of G**X [X < 0] */
 | |
|      err = mp_exptmod(&tmpG, &tmpX, P, Y);
 | |
|      mp_clear_multi(&tmpG, &tmpX, NULL);
 | |
|      return err;
 | |
| #else 
 | |
|      /* no invmod */
 | |
|      return MP_VAL;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| /* modified diminished radix reduction */
 | |
| #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
 | |
|   if (mp_reduce_is_2k_l(P) == MP_YES) {
 | |
|      return s_mp_exptmod(G, X, P, Y, 1);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_DR_IS_MODULUS_C
 | |
|   /* is it a DR modulus? */
 | |
|   dr = mp_dr_is_modulus(P);
 | |
| #else
 | |
|   /* default to no */
 | |
|   dr = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef BN_MP_REDUCE_IS_2K_C
 | |
|   /* if not, is it a unrestricted DR modulus? */
 | |
|   if (dr == 0) {
 | |
|      dr = mp_reduce_is_2k(P) << 1;
 | |
|   }
 | |
| #endif
 | |
|     
 | |
|   /* if the modulus is odd or dr != 0 use the montgomery method */
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|   if ((mp_isodd (P) == MP_YES) || (dr !=  0)) {
 | |
|     return mp_exptmod_fast (G, X, P, Y, dr);
 | |
|   } else {
 | |
| #endif
 | |
| #ifdef BN_S_MP_EXPTMOD_C
 | |
|     /* otherwise use the generic Barrett reduction technique */
 | |
|     return s_mp_exptmod (G, X, P, Y, 0);
 | |
| #else
 | |
|     /* no exptmod for evens */
 | |
|     return MP_VAL;
 | |
| #endif
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 |