125 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			125 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_SQRTMOD_PRIME_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  */
 | |
| 
 | |
| /* Tonelli-Shanks algorithm
 | |
|  * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
 | |
|  * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
 | |
|  *
 | |
|  */
 | |
| 
 | |
| int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
 | |
| {
 | |
|   int res, legendre;
 | |
|   mp_int t1, C, Q, S, Z, M, T, R, two;
 | |
|   mp_digit i;
 | |
| 
 | |
|   /* first handle the simple cases */
 | |
|   if (mp_cmp_d(n, 0) == MP_EQ) {
 | |
|     mp_zero(ret);
 | |
|     return MP_OKAY;
 | |
|   }
 | |
|   if (mp_cmp_d(prime, 2) == MP_EQ)                              return MP_VAL; /* prime must be odd */
 | |
|   if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY)        return res;
 | |
|   if (legendre == -1)                                           return MP_VAL; /* quadratic non-residue mod prime */
 | |
| 
 | |
|   if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
 | |
|     return res;
 | |
|   }
 | |
| 
 | |
|   /* SPECIAL CASE: if prime mod 4 == 3
 | |
|    * compute directly: res = n^(prime+1)/4 mod prime
 | |
|    * Handbook of Applied Cryptography algorithm 3.36
 | |
|    */
 | |
|   if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY)                goto cleanup;
 | |
|   if (i == 3) {
 | |
|     if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY)             goto cleanup;
 | |
|     if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
 | |
|     if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                  goto cleanup;
 | |
|     if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY)      goto cleanup;
 | |
|     res = MP_OKAY;
 | |
|     goto cleanup;
 | |
|   }
 | |
| 
 | |
|   /* NOW: Tonelli-Shanks algorithm */
 | |
| 
 | |
|   /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
 | |
|   if ((res = mp_copy(prime, &Q)) != MP_OKAY)                    goto cleanup;
 | |
|   if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY)                   goto cleanup;
 | |
|   /* Q = prime - 1 */
 | |
|   mp_zero(&S);
 | |
|   /* S = 0 */
 | |
|   while (mp_iseven(&Q) != MP_NO) {
 | |
|     if ((res = mp_div_2(&Q, &Q)) != MP_OKAY)                    goto cleanup;
 | |
|     /* Q = Q / 2 */
 | |
|     if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY)                 goto cleanup;
 | |
|     /* S = S + 1 */
 | |
|   }
 | |
| 
 | |
|   /* find a Z such that the Legendre symbol (Z|prime) == -1 */
 | |
|   if ((res = mp_set_int(&Z, 2)) != MP_OKAY)                     goto cleanup;
 | |
|   /* Z = 2 */
 | |
|   while(1) {
 | |
|     if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY)     goto cleanup;
 | |
|     if (legendre == -1) break;
 | |
|     if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY)                 goto cleanup;
 | |
|     /* Z = Z + 1 */
 | |
|   }
 | |
| 
 | |
|   if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY)         goto cleanup;
 | |
|   /* C = Z ^ Q mod prime */
 | |
|   if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY)                  goto cleanup;
 | |
|   if ((res = mp_div_2(&t1, &t1)) != MP_OKAY)                    goto cleanup;
 | |
|   /* t1 = (Q + 1) / 2 */
 | |
|   if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY)         goto cleanup;
 | |
|   /* R = n ^ ((Q + 1) / 2) mod prime */
 | |
|   if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY)          goto cleanup;
 | |
|   /* T = n ^ Q mod prime */
 | |
|   if ((res = mp_copy(&S, &M)) != MP_OKAY)                       goto cleanup;
 | |
|   /* M = S */
 | |
|   if ((res = mp_set_int(&two, 2)) != MP_OKAY)                   goto cleanup;
 | |
| 
 | |
|   res = MP_VAL;
 | |
|   while (1) {
 | |
|     if ((res = mp_copy(&T, &t1)) != MP_OKAY)                    goto cleanup;
 | |
|     i = 0;
 | |
|     while (1) {
 | |
|       if (mp_cmp_d(&t1, 1) == MP_EQ) break;
 | |
|       if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
 | |
|       i++;
 | |
|     }
 | |
|     if (i == 0) {
 | |
|       if ((res = mp_copy(&R, ret)) != MP_OKAY)                  goto cleanup;
 | |
|       res = MP_OKAY;
 | |
|       goto cleanup;
 | |
|     }
 | |
|     if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY)                goto cleanup;
 | |
|     if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY)               goto cleanup;
 | |
|     if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY)   goto cleanup;
 | |
|     /* t1 = 2 ^ (M - i - 1) */
 | |
|     if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY)     goto cleanup;
 | |
|     /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
 | |
|     if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY)           goto cleanup;
 | |
|     /* C = (t1 * t1) mod prime */
 | |
|     if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY)       goto cleanup;
 | |
|     /* R = (R * t1) mod prime */
 | |
|     if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY)        goto cleanup;
 | |
|     /* T = (T * C) mod prime */
 | |
|     mp_set(&M, i);
 | |
|     /* M = i */
 | |
|   }
 | |
| 
 | |
| cleanup:
 | |
|   mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| #endif
 |