571 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			571 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* LibTomMath, multiple-precision integer library -- Tom St Denis
 | 
						|
 *
 | 
						|
 * LibTomMath is a library that provides multiple-precision
 | 
						|
 * integer arithmetic as well as number theoretic functionality.
 | 
						|
 *
 | 
						|
 * The library was designed directly after the MPI library by
 | 
						|
 * Michael Fromberger but has been written from scratch with
 | 
						|
 * additional optimizations in place.
 | 
						|
 *
 | 
						|
 * The library is free for all purposes without any express
 | 
						|
 * guarantee it works.
 | 
						|
 *
 | 
						|
 * Tom St Denis, tstdenis82@gmail.com, http://math.libtomcrypt.com
 | 
						|
 */
 | 
						|
#ifndef BN_H_
 | 
						|
#define BN_H_
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#include <tommath_class.h>
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
/* detect 64-bit mode if possible */
 | 
						|
#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
 | 
						|
    defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
 | 
						|
    defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
 | 
						|
    defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
 | 
						|
    defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
 | 
						|
    defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
 | 
						|
#   if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
 | 
						|
#      define MP_64BIT
 | 
						|
#   endif
 | 
						|
#endif
 | 
						|
 | 
						|
/* some default configurations.
 | 
						|
 *
 | 
						|
 * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
 | 
						|
 * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
 | 
						|
 *
 | 
						|
 * At the very least a mp_digit must be able to hold 7 bits
 | 
						|
 * [any size beyond that is ok provided it doesn't overflow the data type]
 | 
						|
 */
 | 
						|
#ifdef MP_8BIT
 | 
						|
typedef uint8_t              mp_digit;
 | 
						|
typedef uint16_t             mp_word;
 | 
						|
#   define MP_SIZEOF_MP_DIGIT 1
 | 
						|
#   ifdef DIGIT_BIT
 | 
						|
#      error You must not define DIGIT_BIT when using MP_8BIT
 | 
						|
#   endif
 | 
						|
#elif defined(MP_16BIT)
 | 
						|
typedef uint16_t             mp_digit;
 | 
						|
typedef uint32_t             mp_word;
 | 
						|
#   define MP_SIZEOF_MP_DIGIT 2
 | 
						|
#   ifdef DIGIT_BIT
 | 
						|
#      error You must not define DIGIT_BIT when using MP_16BIT
 | 
						|
#   endif
 | 
						|
#elif defined(MP_64BIT)
 | 
						|
/* for GCC only on supported platforms */
 | 
						|
typedef uint64_t mp_digit;
 | 
						|
#   if defined(_WIN32)
 | 
						|
typedef unsigned __int128    mp_word;
 | 
						|
#   elif defined(__GNUC__)
 | 
						|
typedef unsigned long        mp_word __attribute__((mode(TI)));
 | 
						|
#   else
 | 
						|
/* it seems you have a problem
 | 
						|
 * but we assume you can somewhere define your own uint128_t */
 | 
						|
typedef uint128_t            mp_word;
 | 
						|
#   endif
 | 
						|
 | 
						|
#   define DIGIT_BIT 60
 | 
						|
#else
 | 
						|
/* this is the default case, 28-bit digits */
 | 
						|
 | 
						|
/* this is to make porting into LibTomCrypt easier :-) */
 | 
						|
typedef uint32_t             mp_digit;
 | 
						|
typedef uint64_t             mp_word;
 | 
						|
 | 
						|
#   ifdef MP_31BIT
 | 
						|
/* this is an extension that uses 31-bit digits */
 | 
						|
#      define DIGIT_BIT 31
 | 
						|
#   else
 | 
						|
/* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */
 | 
						|
#      define DIGIT_BIT 28
 | 
						|
#      define MP_28BIT
 | 
						|
#   endif
 | 
						|
#endif
 | 
						|
 | 
						|
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
 | 
						|
#ifndef DIGIT_BIT
 | 
						|
#   define DIGIT_BIT (((CHAR_BIT * MP_SIZEOF_MP_DIGIT) - 1))  /* bits per digit */
 | 
						|
typedef uint_least32_t mp_min_u32;
 | 
						|
#else
 | 
						|
typedef mp_digit mp_min_u32;
 | 
						|
#endif
 | 
						|
 | 
						|
/* use arc4random on platforms that support it */
 | 
						|
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
 | 
						|
#   define MP_GEN_RANDOM()    arc4random()
 | 
						|
#   define MP_GEN_RANDOM_MAX  0xffffffff
 | 
						|
#endif
 | 
						|
 | 
						|
/* use rand() as fall-back if there's no better rand function */
 | 
						|
#ifndef MP_GEN_RANDOM
 | 
						|
#   define MP_GEN_RANDOM()    rand()
 | 
						|
#   define MP_GEN_RANDOM_MAX  RAND_MAX
 | 
						|
#endif
 | 
						|
 | 
						|
#define MP_DIGIT_BIT     DIGIT_BIT
 | 
						|
#define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
 | 
						|
#define MP_DIGIT_MAX     MP_MASK
 | 
						|
 | 
						|
/* equalities */
 | 
						|
#define MP_LT        -1   /* less than */
 | 
						|
#define MP_EQ         0   /* equal to */
 | 
						|
#define MP_GT         1   /* greater than */
 | 
						|
 | 
						|
#define MP_ZPOS       0   /* positive integer */
 | 
						|
#define MP_NEG        1   /* negative */
 | 
						|
 | 
						|
#define MP_OKAY       0   /* ok result */
 | 
						|
#define MP_MEM        -2  /* out of mem */
 | 
						|
#define MP_VAL        -3  /* invalid input */
 | 
						|
#define MP_RANGE      MP_VAL
 | 
						|
 | 
						|
#define MP_YES        1   /* yes response */
 | 
						|
#define MP_NO         0   /* no response */
 | 
						|
 | 
						|
/* Primality generation flags */
 | 
						|
#define LTM_PRIME_BBS      0x0001 /* BBS style prime */
 | 
						|
#define LTM_PRIME_SAFE     0x0002 /* Safe prime (p-1)/2 == prime */
 | 
						|
#define LTM_PRIME_2MSB_ON  0x0008 /* force 2nd MSB to 1 */
 | 
						|
 | 
						|
typedef int           mp_err;
 | 
						|
 | 
						|
/* you'll have to tune these... */
 | 
						|
extern int KARATSUBA_MUL_CUTOFF,
 | 
						|
       KARATSUBA_SQR_CUTOFF,
 | 
						|
       TOOM_MUL_CUTOFF,
 | 
						|
       TOOM_SQR_CUTOFF;
 | 
						|
 | 
						|
/* define this to use lower memory usage routines (exptmods mostly) */
 | 
						|
/* #define MP_LOW_MEM */
 | 
						|
 | 
						|
/* default precision */
 | 
						|
#ifndef MP_PREC
 | 
						|
#   ifndef MP_LOW_MEM
 | 
						|
#      define MP_PREC 32        /* default digits of precision */
 | 
						|
#   else
 | 
						|
#      define MP_PREC 8         /* default digits of precision */
 | 
						|
#   endif
 | 
						|
#endif
 | 
						|
 | 
						|
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
 | 
						|
#define MP_WARRAY               (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) + 1))
 | 
						|
 | 
						|
/* the infamous mp_int structure */
 | 
						|
typedef struct  {
 | 
						|
   int used, alloc, sign;
 | 
						|
   mp_digit *dp;
 | 
						|
} mp_int;
 | 
						|
 | 
						|
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
 | 
						|
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
 | 
						|
 | 
						|
 | 
						|
#define USED(m)     ((m)->used)
 | 
						|
#define DIGIT(m, k) ((m)->dp[(k)])
 | 
						|
#define SIGN(m)     ((m)->sign)
 | 
						|
 | 
						|
/* error code to char* string */
 | 
						|
const char *mp_error_to_string(int code);
 | 
						|
 | 
						|
/* ---> init and deinit bignum functions <--- */
 | 
						|
/* init a bignum */
 | 
						|
int mp_init(mp_int *a);
 | 
						|
 | 
						|
/* free a bignum */
 | 
						|
void mp_clear(mp_int *a);
 | 
						|
 | 
						|
/* init a null terminated series of arguments */
 | 
						|
int mp_init_multi(mp_int *mp, ...);
 | 
						|
 | 
						|
/* clear a null terminated series of arguments */
 | 
						|
void mp_clear_multi(mp_int *mp, ...);
 | 
						|
 | 
						|
/* exchange two ints */
 | 
						|
void mp_exch(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* shrink ram required for a bignum */
 | 
						|
int mp_shrink(mp_int *a);
 | 
						|
 | 
						|
/* grow an int to a given size */
 | 
						|
int mp_grow(mp_int *a, int size);
 | 
						|
 | 
						|
/* init to a given number of digits */
 | 
						|
int mp_init_size(mp_int *a, int size);
 | 
						|
 | 
						|
/* ---> Basic Manipulations <--- */
 | 
						|
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
 | 
						|
#define mp_iseven(a) ((((a)->used == 0) || (((a)->dp[0] & 1u) == 0u)) ? MP_YES : MP_NO)
 | 
						|
#define mp_isodd(a)  ((((a)->used > 0) && (((a)->dp[0] & 1u) == 1u)) ? MP_YES : MP_NO)
 | 
						|
#define mp_isneg(a)  (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
 | 
						|
 | 
						|
/* set to zero */
 | 
						|
void mp_zero(mp_int *a);
 | 
						|
 | 
						|
/* set to a digit */
 | 
						|
void mp_set(mp_int *a, mp_digit b);
 | 
						|
 | 
						|
/* set a 32-bit const */
 | 
						|
int mp_set_int(mp_int *a, unsigned long b);
 | 
						|
 | 
						|
/* set a platform dependent unsigned long value */
 | 
						|
int mp_set_long(mp_int *a, unsigned long b);
 | 
						|
 | 
						|
/* set a platform dependent unsigned long long value */
 | 
						|
int mp_set_long_long(mp_int *a, unsigned long long b);
 | 
						|
 | 
						|
/* get a 32-bit value */
 | 
						|
unsigned long mp_get_int(mp_int *a);
 | 
						|
 | 
						|
/* get a platform dependent unsigned long value */
 | 
						|
unsigned long mp_get_long(mp_int *a);
 | 
						|
 | 
						|
/* get a platform dependent unsigned long long value */
 | 
						|
unsigned long long mp_get_long_long(mp_int *a);
 | 
						|
 | 
						|
/* initialize and set a digit */
 | 
						|
int mp_init_set(mp_int *a, mp_digit b);
 | 
						|
 | 
						|
/* initialize and set 32-bit value */
 | 
						|
int mp_init_set_int(mp_int *a, unsigned long b);
 | 
						|
 | 
						|
/* copy, b = a */
 | 
						|
int mp_copy(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* inits and copies, a = b */
 | 
						|
int mp_init_copy(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* trim unused digits */
 | 
						|
void mp_clamp(mp_int *a);
 | 
						|
 | 
						|
/* import binary data */
 | 
						|
int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
 | 
						|
 | 
						|
/* export binary data */
 | 
						|
int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, mp_int *op);
 | 
						|
 | 
						|
/* ---> digit manipulation <--- */
 | 
						|
 | 
						|
/* right shift by "b" digits */
 | 
						|
void mp_rshd(mp_int *a, int b);
 | 
						|
 | 
						|
/* left shift by "b" digits */
 | 
						|
int mp_lshd(mp_int *a, int b);
 | 
						|
 | 
						|
/* c = a / 2**b, implemented as c = a >> b */
 | 
						|
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
 | 
						|
 | 
						|
/* b = a/2 */
 | 
						|
int mp_div_2(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* c = a * 2**b, implemented as c = a << b */
 | 
						|
int mp_mul_2d(mp_int *a, int b, mp_int *c);
 | 
						|
 | 
						|
/* b = a*2 */
 | 
						|
int mp_mul_2(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* c = a mod 2**b */
 | 
						|
int mp_mod_2d(mp_int *a, int b, mp_int *c);
 | 
						|
 | 
						|
/* computes a = 2**b */
 | 
						|
int mp_2expt(mp_int *a, int b);
 | 
						|
 | 
						|
/* Counts the number of lsbs which are zero before the first zero bit */
 | 
						|
int mp_cnt_lsb(mp_int *a);
 | 
						|
 | 
						|
/* I Love Earth! */
 | 
						|
 | 
						|
/* makes a pseudo-random int of a given size */
 | 
						|
int mp_rand(mp_int *a, int digits);
 | 
						|
 | 
						|
/* ---> binary operations <--- */
 | 
						|
/* c = a XOR b  */
 | 
						|
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* c = a OR b */
 | 
						|
int mp_or(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* c = a AND b */
 | 
						|
int mp_and(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* ---> Basic arithmetic <--- */
 | 
						|
 | 
						|
/* b = -a */
 | 
						|
int mp_neg(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* b = |a| */
 | 
						|
int mp_abs(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* compare a to b */
 | 
						|
int mp_cmp(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* compare |a| to |b| */
 | 
						|
int mp_cmp_mag(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* c = a + b */
 | 
						|
int mp_add(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* c = a - b */
 | 
						|
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* c = a * b */
 | 
						|
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* b = a*a  */
 | 
						|
int mp_sqr(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* a/b => cb + d == a */
 | 
						|
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | 
						|
 | 
						|
/* c = a mod b, 0 <= c < b  */
 | 
						|
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* ---> single digit functions <--- */
 | 
						|
 | 
						|
/* compare against a single digit */
 | 
						|
int mp_cmp_d(mp_int *a, mp_digit b);
 | 
						|
 | 
						|
/* c = a + b */
 | 
						|
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
 | 
						|
 | 
						|
/* c = a - b */
 | 
						|
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
 | 
						|
 | 
						|
/* c = a * b */
 | 
						|
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
 | 
						|
 | 
						|
/* a/b => cb + d == a */
 | 
						|
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
 | 
						|
 | 
						|
/* a/3 => 3c + d == a */
 | 
						|
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
 | 
						|
 | 
						|
/* c = a**b */
 | 
						|
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
 | 
						|
int mp_expt_d_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
 | 
						|
 | 
						|
/* c = a mod b, 0 <= c < b  */
 | 
						|
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
 | 
						|
 | 
						|
/* ---> number theory <--- */
 | 
						|
 | 
						|
/* d = a + b (mod c) */
 | 
						|
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | 
						|
 | 
						|
/* d = a - b (mod c) */
 | 
						|
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | 
						|
 | 
						|
/* d = a * b (mod c) */
 | 
						|
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | 
						|
 | 
						|
/* c = a * a (mod b) */
 | 
						|
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* c = 1/a (mod b) */
 | 
						|
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* c = (a, b) */
 | 
						|
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* produces value such that U1*a + U2*b = U3 */
 | 
						|
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
 | 
						|
 | 
						|
/* c = [a, b] or (a*b)/(a, b) */
 | 
						|
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* finds one of the b'th root of a, such that |c|**b <= |a|
 | 
						|
 *
 | 
						|
 * returns error if a < 0 and b is even
 | 
						|
 */
 | 
						|
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
 | 
						|
int mp_n_root_ex(mp_int *a, mp_digit b, mp_int *c, int fast);
 | 
						|
 | 
						|
/* special sqrt algo */
 | 
						|
int mp_sqrt(mp_int *arg, mp_int *ret);
 | 
						|
 | 
						|
/* special sqrt (mod prime) */
 | 
						|
int mp_sqrtmod_prime(mp_int *arg, mp_int *prime, mp_int *ret);
 | 
						|
 | 
						|
/* is number a square? */
 | 
						|
int mp_is_square(mp_int *arg, int *ret);
 | 
						|
 | 
						|
/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
 | 
						|
int mp_jacobi(mp_int *a, mp_int *n, int *c);
 | 
						|
 | 
						|
/* used to setup the Barrett reduction for a given modulus b */
 | 
						|
int mp_reduce_setup(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* Barrett Reduction, computes a (mod b) with a precomputed value c
 | 
						|
 *
 | 
						|
 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
 | 
						|
 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
 | 
						|
 */
 | 
						|
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
 | 
						|
 | 
						|
/* setups the montgomery reduction */
 | 
						|
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
 | 
						|
 | 
						|
/* computes a = B**n mod b without division or multiplication useful for
 | 
						|
 * normalizing numbers in a Montgomery system.
 | 
						|
 */
 | 
						|
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
 | 
						|
 | 
						|
/* computes x/R == x (mod N) via Montgomery Reduction */
 | 
						|
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
 | 
						|
 | 
						|
/* returns 1 if a is a valid DR modulus */
 | 
						|
int mp_dr_is_modulus(mp_int *a);
 | 
						|
 | 
						|
/* sets the value of "d" required for mp_dr_reduce */
 | 
						|
void mp_dr_setup(mp_int *a, mp_digit *d);
 | 
						|
 | 
						|
/* reduces a modulo b using the Diminished Radix method */
 | 
						|
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
 | 
						|
 | 
						|
/* returns true if a can be reduced with mp_reduce_2k */
 | 
						|
int mp_reduce_is_2k(mp_int *a);
 | 
						|
 | 
						|
/* determines k value for 2k reduction */
 | 
						|
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
 | 
						|
 | 
						|
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
 | 
						|
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
 | 
						|
 | 
						|
/* returns true if a can be reduced with mp_reduce_2k_l */
 | 
						|
int mp_reduce_is_2k_l(mp_int *a);
 | 
						|
 | 
						|
/* determines k value for 2k reduction */
 | 
						|
int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
 | 
						|
 | 
						|
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
 | 
						|
int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
 | 
						|
 | 
						|
/* d = a**b (mod c) */
 | 
						|
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 | 
						|
 | 
						|
/* ---> Primes <--- */
 | 
						|
 | 
						|
/* number of primes */
 | 
						|
#ifdef MP_8BIT
 | 
						|
#  define PRIME_SIZE 31
 | 
						|
#else
 | 
						|
#  define PRIME_SIZE 256
 | 
						|
#endif
 | 
						|
 | 
						|
/* table of first PRIME_SIZE primes */
 | 
						|
extern const mp_digit ltm_prime_tab[PRIME_SIZE];
 | 
						|
 | 
						|
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
 | 
						|
int mp_prime_is_divisible(mp_int *a, int *result);
 | 
						|
 | 
						|
/* performs one Fermat test of "a" using base "b".
 | 
						|
 * Sets result to 0 if composite or 1 if probable prime
 | 
						|
 */
 | 
						|
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
 | 
						|
 | 
						|
/* performs one Miller-Rabin test of "a" using base "b".
 | 
						|
 * Sets result to 0 if composite or 1 if probable prime
 | 
						|
 */
 | 
						|
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
 | 
						|
 | 
						|
/* This gives [for a given bit size] the number of trials required
 | 
						|
 * such that Miller-Rabin gives a prob of failure lower than 2^-96
 | 
						|
 */
 | 
						|
int mp_prime_rabin_miller_trials(int size);
 | 
						|
 | 
						|
/* performs t rounds of Miller-Rabin on "a" using the first
 | 
						|
 * t prime bases.  Also performs an initial sieve of trial
 | 
						|
 * division.  Determines if "a" is prime with probability
 | 
						|
 * of error no more than (1/4)**t.
 | 
						|
 *
 | 
						|
 * Sets result to 1 if probably prime, 0 otherwise
 | 
						|
 */
 | 
						|
int mp_prime_is_prime(mp_int *a, int t, int *result);
 | 
						|
 | 
						|
/* finds the next prime after the number "a" using "t" trials
 | 
						|
 * of Miller-Rabin.
 | 
						|
 *
 | 
						|
 * bbs_style = 1 means the prime must be congruent to 3 mod 4
 | 
						|
 */
 | 
						|
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
 | 
						|
 | 
						|
/* makes a truly random prime of a given size (bytes),
 | 
						|
 * call with bbs = 1 if you want it to be congruent to 3 mod 4
 | 
						|
 *
 | 
						|
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 | 
						|
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 | 
						|
 * so it can be NULL
 | 
						|
 *
 | 
						|
 * The prime generated will be larger than 2^(8*size).
 | 
						|
 */
 | 
						|
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
 | 
						|
 | 
						|
/* makes a truly random prime of a given size (bits),
 | 
						|
 *
 | 
						|
 * Flags are as follows:
 | 
						|
 *
 | 
						|
 *   LTM_PRIME_BBS      - make prime congruent to 3 mod 4
 | 
						|
 *   LTM_PRIME_SAFE     - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
 | 
						|
 *   LTM_PRIME_2MSB_ON  - make the 2nd highest bit one
 | 
						|
 *
 | 
						|
 * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
 | 
						|
 * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
 | 
						|
 * so it can be NULL
 | 
						|
 *
 | 
						|
 */
 | 
						|
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
 | 
						|
 | 
						|
/* ---> radix conversion <--- */
 | 
						|
int mp_count_bits(mp_int *a);
 | 
						|
 | 
						|
int mp_unsigned_bin_size(mp_int *a);
 | 
						|
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
 | 
						|
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
 | 
						|
int mp_to_unsigned_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
 | 
						|
 | 
						|
int mp_signed_bin_size(mp_int *a);
 | 
						|
int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
 | 
						|
int mp_to_signed_bin(mp_int *a,  unsigned char *b);
 | 
						|
int mp_to_signed_bin_n(mp_int *a, unsigned char *b, unsigned long *outlen);
 | 
						|
 | 
						|
int mp_read_radix(mp_int *a, const char *str, int radix);
 | 
						|
int mp_toradix(mp_int *a, char *str, int radix);
 | 
						|
int mp_toradix_n(mp_int *a, char *str, int radix, int maxlen);
 | 
						|
int mp_radix_size(mp_int *a, int radix, int *size);
 | 
						|
 | 
						|
#ifndef LTM_NO_FILE
 | 
						|
int mp_fread(mp_int *a, int radix, FILE *stream);
 | 
						|
int mp_fwrite(mp_int *a, int radix, FILE *stream);
 | 
						|
#endif
 | 
						|
 | 
						|
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
 | 
						|
#define mp_raw_size(mp)           mp_signed_bin_size(mp)
 | 
						|
#define mp_toraw(mp, str)         mp_to_signed_bin((mp), (str))
 | 
						|
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
 | 
						|
#define mp_mag_size(mp)           mp_unsigned_bin_size(mp)
 | 
						|
#define mp_tomag(mp, str)         mp_to_unsigned_bin((mp), (str))
 | 
						|
 | 
						|
#define mp_tobinary(M, S)  mp_toradix((M), (S), 2)
 | 
						|
#define mp_tooctal(M, S)   mp_toradix((M), (S), 8)
 | 
						|
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
 | 
						|
#define mp_tohex(M, S)     mp_toradix((M), (S), 16)
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* ref:         $Format:%D$ */
 | 
						|
/* git commit:  $Format:%H$ */
 | 
						|
/* commit time: $Format:%ai$ */
 |