322 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <tommath_private.h>
 | |
| #ifdef BN_MP_EXPTMOD_FAST_C
 | |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis
 | |
|  *
 | |
|  * LibTomMath is a library that provides multiple-precision
 | |
|  * integer arithmetic as well as number theoretic functionality.
 | |
|  *
 | |
|  * The library was designed directly after the MPI library by
 | |
|  * Michael Fromberger but has been written from scratch with
 | |
|  * additional optimizations in place.
 | |
|  *
 | |
|  * The library is free for all purposes without any express
 | |
|  * guarantee it works.
 | |
|  *
 | |
|  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
 | |
|  */
 | |
| 
 | |
| /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | |
|  *
 | |
|  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
 | |
|  * The value of k changes based on the size of the exponent.
 | |
|  *
 | |
|  * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
 | |
|  */
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|    #define TAB_SIZE 32
 | |
| #else
 | |
|    #define TAB_SIZE 256
 | |
| #endif
 | |
| 
 | |
| int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
 | |
| {
 | |
|   mp_int  M[TAB_SIZE], res;
 | |
|   mp_digit buf, mp;
 | |
|   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
 | |
| 
 | |
|   /* use a pointer to the reduction algorithm.  This allows us to use
 | |
|    * one of many reduction algorithms without modding the guts of
 | |
|    * the code with if statements everywhere.
 | |
|    */
 | |
|   int     (*redux)(mp_int*,mp_int*,mp_digit);
 | |
| 
 | |
|   /* find window size */
 | |
|   x = mp_count_bits (X);
 | |
|   if (x <= 7) {
 | |
|     winsize = 2;
 | |
|   } else if (x <= 36) {
 | |
|     winsize = 3;
 | |
|   } else if (x <= 140) {
 | |
|     winsize = 4;
 | |
|   } else if (x <= 450) {
 | |
|     winsize = 5;
 | |
|   } else if (x <= 1303) {
 | |
|     winsize = 6;
 | |
|   } else if (x <= 3529) {
 | |
|     winsize = 7;
 | |
|   } else {
 | |
|     winsize = 8;
 | |
|   }
 | |
| 
 | |
| #ifdef MP_LOW_MEM
 | |
|   if (winsize > 5) {
 | |
|      winsize = 5;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* init M array */
 | |
|   /* init first cell */
 | |
|   if ((err = mp_init(&M[1])) != MP_OKAY) {
 | |
|      return err;
 | |
|   }
 | |
| 
 | |
|   /* now init the second half of the array */
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     if ((err = mp_init(&M[x])) != MP_OKAY) {
 | |
|       for (y = 1<<(winsize-1); y < x; y++) {
 | |
|         mp_clear (&M[y]);
 | |
|       }
 | |
|       mp_clear(&M[1]);
 | |
|       return err;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* determine and setup reduction code */
 | |
|   if (redmode == 0) {
 | |
| #ifdef BN_MP_MONTGOMERY_SETUP_C     
 | |
|      /* now setup montgomery  */
 | |
|      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
 | |
|         goto LBL_M;
 | |
|      }
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
| 
 | |
|      /* automatically pick the comba one if available (saves quite a few calls/ifs) */
 | |
| #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | |
|      if ((((P->used * 2) + 1) < MP_WARRAY) &&
 | |
|           (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
 | |
|         redux = fast_mp_montgomery_reduce;
 | |
|      } else 
 | |
| #endif
 | |
|      {
 | |
| #ifdef BN_MP_MONTGOMERY_REDUCE_C
 | |
|         /* use slower baseline Montgomery method */
 | |
|         redux = mp_montgomery_reduce;
 | |
| #else
 | |
|         err = MP_VAL;
 | |
|         goto LBL_M;
 | |
| #endif
 | |
|      }
 | |
|   } else if (redmode == 1) {
 | |
| #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
 | |
|      /* setup DR reduction for moduli of the form B**k - b */
 | |
|      mp_dr_setup(P, &mp);
 | |
|      redux = mp_dr_reduce;
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
|   } else {
 | |
| #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
 | |
|      /* setup DR reduction for moduli of the form 2**k - b */
 | |
|      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
 | |
|         goto LBL_M;
 | |
|      }
 | |
|      redux = mp_reduce_2k;
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_M;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /* setup result */
 | |
|   if ((err = mp_init (&res)) != MP_OKAY) {
 | |
|     goto LBL_M;
 | |
|   }
 | |
| 
 | |
|   /* create M table
 | |
|    *
 | |
| 
 | |
|    *
 | |
|    * The first half of the table is not computed though accept for M[0] and M[1]
 | |
|    */
 | |
| 
 | |
|   if (redmode == 0) {
 | |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | |
|      /* now we need R mod m */
 | |
|      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
| 
 | |
|      /* now set M[1] to G * R mod m */
 | |
|      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
| #else
 | |
|      err = MP_VAL;
 | |
|      goto LBL_RES;
 | |
| #endif
 | |
|   } else {
 | |
|      mp_set(&res, 1);
 | |
|      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
 | |
|   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|     goto LBL_RES;
 | |
|   }
 | |
| 
 | |
|   for (x = 0; x < (winsize - 1); x++) {
 | |
|     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* create upper table */
 | |
|   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
 | |
|     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|     if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
 | |
|       goto LBL_RES;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* set initial mode and bit cnt */
 | |
|   mode   = 0;
 | |
|   bitcnt = 1;
 | |
|   buf    = 0;
 | |
|   digidx = X->used - 1;
 | |
|   bitcpy = 0;
 | |
|   bitbuf = 0;
 | |
| 
 | |
|   for (;;) {
 | |
|     /* grab next digit as required */
 | |
|     if (--bitcnt == 0) {
 | |
|       /* if digidx == -1 we are out of digits so break */
 | |
|       if (digidx == -1) {
 | |
|         break;
 | |
|       }
 | |
|       /* read next digit and reset bitcnt */
 | |
|       buf    = X->dp[digidx--];
 | |
|       bitcnt = (int)DIGIT_BIT;
 | |
|     }
 | |
| 
 | |
|     /* grab the next msb from the exponent */
 | |
|     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
 | |
|     buf <<= (mp_digit)1;
 | |
| 
 | |
|     /* if the bit is zero and mode == 0 then we ignore it
 | |
|      * These represent the leading zero bits before the first 1 bit
 | |
|      * in the exponent.  Technically this opt is not required but it
 | |
|      * does lower the # of trivial squaring/reductions used
 | |
|      */
 | |
|     if ((mode == 0) && (y == 0)) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* if the bit is zero and mode == 1 then we square */
 | |
|     if ((mode == 1) && (y == 0)) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     /* else we add it to the window */
 | |
|     bitbuf |= (y << (winsize - ++bitcpy));
 | |
|     mode    = 2;
 | |
| 
 | |
|     if (bitcpy == winsize) {
 | |
|       /* ok window is filled so square as required and multiply  */
 | |
|       /* square first */
 | |
|       for (x = 0; x < winsize; x++) {
 | |
|         if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       /* then multiply */
 | |
|       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* empty window and reset */
 | |
|       bitcpy = 0;
 | |
|       bitbuf = 0;
 | |
|       mode   = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* if bits remain then square/multiply */
 | |
|   if ((mode == 2) && (bitcpy > 0)) {
 | |
|     /* square then multiply if the bit is set */
 | |
|     for (x = 0; x < bitcpy; x++) {
 | |
|       if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
|       if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|         goto LBL_RES;
 | |
|       }
 | |
| 
 | |
|       /* get next bit of the window */
 | |
|       bitbuf <<= 1;
 | |
|       if ((bitbuf & (1 << winsize)) != 0) {
 | |
|         /* then multiply */
 | |
|         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|         if ((err = redux (&res, P, mp)) != MP_OKAY) {
 | |
|           goto LBL_RES;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (redmode == 0) {
 | |
|      /* fixup result if Montgomery reduction is used
 | |
|       * recall that any value in a Montgomery system is
 | |
|       * actually multiplied by R mod n.  So we have
 | |
|       * to reduce one more time to cancel out the factor
 | |
|       * of R.
 | |
|       */
 | |
|      if ((err = redux(&res, P, mp)) != MP_OKAY) {
 | |
|        goto LBL_RES;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   /* swap res with Y */
 | |
|   mp_exch (&res, Y);
 | |
|   err = MP_OKAY;
 | |
| LBL_RES:mp_clear (&res);
 | |
| LBL_M:
 | |
|   mp_clear(&M[1]);
 | |
|   for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
 | |
|     mp_clear (&M[x]);
 | |
|   }
 | |
|   return err;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* $Source$ */
 | |
| /* $Revision$ */
 | |
| /* $Date$ */
 |