| 
									
										
										
										
											2020-10-27 16:22:10 +00:00
										 |  |  | ///////////////////////////////////////////////////////////////////////////////////
 | 
					
						
							| 
									
										
										
										
											2023-11-19 06:43:20 +01:00
										 |  |  | // Copyright (C) 2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com>               //
 | 
					
						
							|  |  |  | // Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com>                      //
 | 
					
						
							|  |  |  | // Copyright (C) 2020 Jon Beniston, M7RCE <jon@beniston.com>                     //
 | 
					
						
							| 
									
										
										
										
											2020-10-27 16:22:10 +00:00
										 |  |  | //                                                                               //
 | 
					
						
							|  |  |  | // This program is free software; you can redistribute it and/or modify          //
 | 
					
						
							|  |  |  | // it under the terms of the GNU General Public License as published by          //
 | 
					
						
							|  |  |  | // the Free Software Foundation as version 3 of the License, or                  //
 | 
					
						
							|  |  |  | // (at your option) any later version.                                           //
 | 
					
						
							|  |  |  | //                                                                               //
 | 
					
						
							|  |  |  | // This program is distributed in the hope that it will be useful,               //
 | 
					
						
							|  |  |  | // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
					
						
							|  |  |  | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
					
						
							|  |  |  | // GNU General Public License V3 for more details.                               //
 | 
					
						
							|  |  |  | //                                                                               //
 | 
					
						
							|  |  |  | // You should have received a copy of the GNU General Public License             //
 | 
					
						
							|  |  |  | // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
					
						
							|  |  |  | ///////////////////////////////////////////////////////////////////////////////////
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include "azel.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <cmath>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Calculate cartesian distance between two points
 | 
					
						
							|  |  |  | double AzEl::cartDistance(const AzElPoint& a, const AzElPoint& b) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     double dx = b.m_cart.m_x - a.m_cart.m_x; | 
					
						
							|  |  |  |     double dy = b.m_cart.m_y - a.m_cart.m_y; | 
					
						
							|  |  |  |     double dz = b.m_cart.m_z - a.m_cart.m_z; | 
					
						
							|  |  |  |     return std::sqrt(dx*dx + dy*dy + dz*dz); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Calculate vector difference then normalise the result
 | 
					
						
							|  |  |  | bool AzEl::normVectorDiff(const AzElCartesian& a, const AzElCartesian& b, AzElCartesian& n) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     n.m_x = b.m_x - a.m_x; | 
					
						
							|  |  |  |     n.m_y = b.m_y - a.m_y; | 
					
						
							|  |  |  |     n.m_z = b.m_z - a.m_z; | 
					
						
							|  |  |  |     double distance = std::sqrt(n.m_x*n.m_x + n.m_y*n.m_y + n.m_z*n.m_z); | 
					
						
							|  |  |  |     if (distance > 0.0f) | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         n.m_x = n.m_x / distance; | 
					
						
							|  |  |  |         n.m_y = n.m_y / distance; | 
					
						
							|  |  |  |         n.m_z = n.m_z / distance; | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         return false; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Convert geodetic latitude (as given by GPS) to geocentric latitude (angle from centre of Earth between the point and equator)
 | 
					
						
							|  |  |  | // Both in radians.
 | 
					
						
							|  |  |  | // https://en.wikipedia.org/wiki/Latitude#Geocentric_latitude
 | 
					
						
							|  |  |  | double AzEl::geocentricLatitude(double latRad) const | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     double e2 = 0.00669437999014; | 
					
						
							|  |  |  |     return std::atan((1.0 - e2) * std::tan(latRad)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Earth radius for a given latitude, as it's not quite spherical
 | 
					
						
							|  |  |  | // http://en.wikipedia.org/wiki/Earth_radius
 | 
					
						
							|  |  |  | double AzEl::earthRadiusInMetres(double geodeticLatRad) const | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |    double equatorialRadius = 6378137.0; | 
					
						
							|  |  |  |    double polarRadius = 6356752.3; | 
					
						
							|  |  |  |    double cosLat = std::cos(geodeticLatRad); | 
					
						
							|  |  |  |    double sinLat = std::sin(geodeticLatRad); | 
					
						
							|  |  |  |    double t1 = equatorialRadius * equatorialRadius * cosLat; | 
					
						
							|  |  |  |    double t2 = polarRadius * polarRadius * sinLat; | 
					
						
							|  |  |  |    double t3 = equatorialRadius * cosLat; | 
					
						
							|  |  |  |    double t4 = polarRadius * sinLat; | 
					
						
							|  |  |  |    return std::sqrt((t1*t1 + t2*t2)/(t3*t3 + t4*t4)); | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Convert spherical coordinate to cartesian. Also calculates radius and a normal vector
 | 
					
						
							|  |  |  | void AzEl::sphericalToCartesian(AzElPoint& point) | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     // First calculate cartesian coords for point on Earth's surface
 | 
					
						
							|  |  |  |     double latRad = point.m_spherical.m_latitude * M_PI/180.0; | 
					
						
							|  |  |  |     double longRad = point.m_spherical.m_longitude * M_PI/180.0; | 
					
						
							|  |  |  |     point.m_radius = earthRadiusInMetres(latRad); | 
					
						
							|  |  |  |     double clat = geocentricLatitude(latRad); | 
					
						
							|  |  |  |     double cosLong = cos(longRad); | 
					
						
							|  |  |  |     double sinLong = sin(longRad); | 
					
						
							|  |  |  |     double cosLat = cos(clat); | 
					
						
							|  |  |  |     double sinLat = sin(clat); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     point.m_cart.m_x = point.m_radius * cosLong * cosLat; | 
					
						
							|  |  |  |     point.m_cart.m_y = point.m_radius * sinLong * cosLat; | 
					
						
							|  |  |  |     point.m_cart.m_z = point.m_radius * sinLat; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Calculate normal vector at surface
 | 
					
						
							|  |  |  |     double cosGLat = std::cos(latRad); | 
					
						
							|  |  |  |     double sinGLat = std::sin(latRad); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     point.m_norm.m_x = cosGLat * cosLong; | 
					
						
							|  |  |  |     point.m_norm.m_y = cosGLat * sinLong; | 
					
						
							|  |  |  |     point.m_norm.m_z = sinGLat; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Add altitude along normal vector
 | 
					
						
							|  |  |  |     point.m_cart.m_x += point.m_spherical.m_altitude * point.m_norm.m_x; | 
					
						
							|  |  |  |     point.m_cart.m_y += point.m_spherical.m_altitude * point.m_norm.m_y; | 
					
						
							|  |  |  |     point.m_cart.m_z += point.m_spherical.m_altitude * point.m_norm.m_z; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Calculate azimuth of target from location
 | 
					
						
							|  |  |  | void AzEl::calcAzimuth() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     AzElPoint bRot; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     // Rotate so location is at lat=0, long=0
 | 
					
						
							|  |  |  |     bRot.m_spherical.m_latitude = m_target.m_spherical.m_latitude; | 
					
						
							|  |  |  |     bRot.m_spherical.m_longitude = m_target.m_spherical.m_longitude - m_location.m_spherical.m_longitude; | 
					
						
							|  |  |  |     bRot.m_spherical.m_altitude = m_target.m_spherical.m_altitude; | 
					
						
							|  |  |  |     sphericalToCartesian(bRot); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     double aLat = geocentricLatitude(-m_location.m_spherical.m_latitude * M_PI / 180.0); | 
					
						
							|  |  |  |     double aCos = std::cos(aLat); | 
					
						
							|  |  |  |     double aSin = std::sin(aLat); | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-14 18:45:05 +01:00
										 |  |  |     //double bx = (bRot.m_cart.m_x * aCos) - (bRot.m_cart.m_z * aSin);
 | 
					
						
							| 
									
										
										
										
											2020-10-27 16:22:10 +00:00
										 |  |  |     double by = bRot.m_cart.m_y; | 
					
						
							|  |  |  |     double bz = (bRot.m_cart.m_x * aSin) + (bRot.m_cart.m_z * aCos); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if (bz*bz + by*by > 1e-6) | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         double theta = std::atan2(bz, by) * 180.0 / M_PI; | 
					
						
							|  |  |  |         m_azimuth = 90.0 - theta; | 
					
						
							|  |  |  |         if (m_azimuth < 0.0) | 
					
						
							|  |  |  |             m_azimuth += 360.0; | 
					
						
							|  |  |  |         else if (m_azimuth > 360.0) | 
					
						
							|  |  |  |             m_azimuth -= 360.0; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |         m_azimuth = 0.0; | 
					
						
							|  |  |  | } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Calculate elevation of target from location
 | 
					
						
							|  |  |  | void AzEl::calcElevation() | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     AzElCartesian bma; | 
					
						
							|  |  |  |     if (normVectorDiff(m_location.m_cart, m_target.m_cart, bma)) | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         m_elevation = 90.0 - (180.0/M_PI) * std::acos(bma.m_x * m_location.m_norm.m_x | 
					
						
							|  |  |  |                                                     + bma.m_y * m_location.m_norm.m_y | 
					
						
							|  |  |  |                                                     + bma.m_z * m_location.m_norm.m_z); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  |     else | 
					
						
							|  |  |  |         m_elevation = 0.0; | 
					
						
							|  |  |  | } |