mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
	
	
		
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
								 | 
							
								///////////////////////////////////////////////////////////////////////////////////
							 | 
						||
| 
								 | 
							
								// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com>               //
							 | 
						||
| 
								 | 
							
								//                                                                               //
							 | 
						||
| 
								 | 
							
								// This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon          //
							 | 
						||
| 
								 | 
							
								// reformatted and adapted to Qt and SDRangel context                            //
							 | 
						||
| 
								 | 
							
								//                                                                               //
							 | 
						||
| 
								 | 
							
								// This program is free software; you can redistribute it and/or modify          //
							 | 
						||
| 
								 | 
							
								// it under the terms of the GNU General Public License as published by          //
							 | 
						||
| 
								 | 
							
								// the Free Software Foundation as version 3 of the License, or                  //
							 | 
						||
| 
								 | 
							
								// (at your option) any later version.                                           //
							 | 
						||
| 
								 | 
							
								//                                                                               //
							 | 
						||
| 
								 | 
							
								// This program is distributed in the hope that it will be useful,               //
							 | 
						||
| 
								 | 
							
								// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
							 | 
						||
| 
								 | 
							
								// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
							 | 
						||
| 
								 | 
							
								// GNU General Public License V3 for more details.                               //
							 | 
						||
| 
								 | 
							
								//                                                                               //
							 | 
						||
| 
								 | 
							
								// You should have received a copy of the GNU General Public License             //
							 | 
						||
| 
								 | 
							
								// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
							 | 
						||
| 
								 | 
							
								///////////////////////////////////////////////////////////////////////////////////
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <math.h>
							 | 
						||
| 
								 | 
							
								#include <algorithm>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "ft8stats.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								namespace FT8 {
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Stats::Stats(int how, float log_tail, float log_rate) :
							 | 
						||
| 
								 | 
							
								    sum_(0),
							 | 
						||
| 
								 | 
							
								    finalized_(false),
							 | 
						||
| 
								 | 
							
								    how_(how),
							 | 
						||
| 
								 | 
							
								    log_tail_(log_tail),
							 | 
						||
| 
								 | 
							
								    log_rate_(log_rate)
							 | 
						||
| 
								 | 
							
								{}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void Stats::add(float x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    a_.push_back(x);
							 | 
						||
| 
								 | 
							
								    sum_ += x;
							 | 
						||
| 
								 | 
							
								    finalized_ = false;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void Stats::finalize()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    finalized_ = true;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    int n = a_.size();
							 | 
						||
| 
								 | 
							
								    mean_ = sum_ / n;
							 | 
						||
| 
								 | 
							
								    float var = 0;
							 | 
						||
| 
								 | 
							
								    float bsum = 0;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    for (int i = 0; i < n; i++)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        float y = a_[i] - mean_;
							 | 
						||
| 
								 | 
							
								        var += y * y;
							 | 
						||
| 
								 | 
							
								        bsum += fabs(y);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    var /= n;
							 | 
						||
| 
								 | 
							
								    stddev_ = sqrt(var);
							 | 
						||
| 
								 | 
							
								    b_ = bsum / n;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // prepare for binary search to find where values lie
							 | 
						||
| 
								 | 
							
								    // in the distribution.
							 | 
						||
| 
								 | 
							
								    if (how_ != 0 && how_ != 5) {
							 | 
						||
| 
								 | 
							
								        std::sort(a_.begin(), a_.end());
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								float Stats::mean()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    if (!finalized_) {
							 | 
						||
| 
								 | 
							
								        finalize();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return mean_;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								float Stats::stddev()
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    if (!finalized_) {
							 | 
						||
| 
								 | 
							
								        finalize();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return stddev_;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// fraction of distribution that's less than x.
							 | 
						||
| 
								 | 
							
								// assumes normal distribution.
							 | 
						||
| 
								 | 
							
								// this is PHI(x), or the CDF at x,
							 | 
						||
| 
								 | 
							
								// or the integral from -infinity
							 | 
						||
| 
								 | 
							
								// to x of the PDF.
							 | 
						||
| 
								 | 
							
								float Stats::gaussian_problt(float x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    float SDs = (x - mean()) / stddev();
							 | 
						||
| 
								 | 
							
								    float frac = 0.5 * (1.0 + erf(SDs / sqrt(2.0)));
							 | 
						||
| 
								 | 
							
								    return frac;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// https://en.wikipedia.org/wiki/Laplace_distribution
							 | 
						||
| 
								 | 
							
								// m and b from page 116 of Mark Owen's Practical Signal Processing.
							 | 
						||
| 
								 | 
							
								float Stats::laplace_problt(float x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    float m = mean();
							 | 
						||
| 
								 | 
							
								    float cdf;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (x < m) {
							 | 
						||
| 
								 | 
							
								        cdf = 0.5 * exp((x - m) / b_);
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								        cdf = 1.0 - 0.5 * exp(-(x - m) / b_);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return cdf;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// look into the actual distribution.
							 | 
						||
| 
								 | 
							
								float Stats::problt(float x)
							 | 
						||
| 
								 | 
							
								{
							 | 
						||
| 
								 | 
							
								    if (!finalized_) {
							 | 
						||
| 
								 | 
							
								        finalize();
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (how_ == 0) {
							 | 
						||
| 
								 | 
							
								        return gaussian_problt(x);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (how_ == 5) {
							 | 
						||
| 
								 | 
							
								        return laplace_problt(x);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    // binary search.
							 | 
						||
| 
								 | 
							
								    auto it = std::lower_bound(a_.begin(), a_.end(), x);
							 | 
						||
| 
								 | 
							
								    int i = it - a_.begin();
							 | 
						||
| 
								 | 
							
								    int n = a_.size();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (how_ == 1)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // index into the distribution.
							 | 
						||
| 
								 | 
							
								        // works poorly for values that are off the ends
							 | 
						||
| 
								 | 
							
								        // of the distribution, since those are all
							 | 
						||
| 
								 | 
							
								        // mapped to 0.0 or 1.0, regardless of magnitude.
							 | 
						||
| 
								 | 
							
								        return i / (float)n;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (how_ == 2)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // use a kind of logistic regression for
							 | 
						||
| 
								 | 
							
								        // values near the edges of the distribution.
							 | 
						||
| 
								 | 
							
								        if (i < log_tail_ * n)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            float x0 = a_[(int)(log_tail_ * n)];
							 | 
						||
| 
								 | 
							
								            float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
							 | 
						||
| 
								 | 
							
								            // y is 0..0.5
							 | 
						||
| 
								 | 
							
								            y /= 5;
							 | 
						||
| 
								 | 
							
								            return y;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else if (i > (1 - log_tail_) * n)
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            float x0 = a_[(int)((1 - log_tail_) * n)];
							 | 
						||
| 
								 | 
							
								            float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
							 | 
						||
| 
								 | 
							
								            // y is 0.5..1
							 | 
						||
| 
								 | 
							
								            // we want (1-log_tail)..1
							 | 
						||
| 
								 | 
							
								            y -= 0.5;
							 | 
						||
| 
								 | 
							
								            y *= 2;
							 | 
						||
| 
								 | 
							
								            y *= log_tail_;
							 | 
						||
| 
								 | 
							
								            y += (1 - log_tail_);
							 | 
						||
| 
								 | 
							
								            return y;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								        else
							 | 
						||
| 
								 | 
							
								        {
							 | 
						||
| 
								 | 
							
								            return i / (float)n;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (how_ == 3)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // gaussian for values near the edge of the distribution.
							 | 
						||
| 
								 | 
							
								        if (i < log_tail_ * n) {
							 | 
						||
| 
								 | 
							
								            return gaussian_problt(x);
							 | 
						||
| 
								 | 
							
								        } else if (i > (1 - log_tail_) * n) {
							 | 
						||
| 
								 | 
							
								            return gaussian_problt(x);
							 | 
						||
| 
								 | 
							
								        } else {
							 | 
						||
| 
								 | 
							
								            return i / (float)n;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    if (how_ == 4)
							 | 
						||
| 
								 | 
							
								    {
							 | 
						||
| 
								 | 
							
								        // gaussian for values outside the distribution.
							 | 
						||
| 
								 | 
							
								        if (x < a_[0] || x > a_.back()) {
							 | 
						||
| 
								 | 
							
								            return gaussian_problt(x);
							 | 
						||
| 
								 | 
							
								        } else {
							 | 
						||
| 
								 | 
							
								            return i / (float)n;
							 | 
						||
| 
								 | 
							
								        }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								} // namespace FT8
							 |