| 
									
										
										
										
											2023-11-19 06:43:20 +01:00
										 |  |  | ///////////////////////////////////////////////////////////////////////////////////////
 | 
					
						
							|  |  |  | // Copyright (C) 2022 Jon Beniston, M7RCE <jon@beniston.com>                         //
 | 
					
						
							|  |  |  | //                                                                                   //
 | 
					
						
							|  |  |  | // This program is free software; you can redistribute it and/or modify              //
 | 
					
						
							|  |  |  | // it under the terms of the GNU General Public License as published by              //
 | 
					
						
							|  |  |  | // the Free Software Foundation as version 3 of the License, or                      //
 | 
					
						
							|  |  |  | // (at your option) any later version.                                               //
 | 
					
						
							|  |  |  | //                                                                                   //
 | 
					
						
							|  |  |  | // This program is distributed in the hope that it will be useful,                   //
 | 
					
						
							|  |  |  | // but WITHOUT ANY WARRANTY; without even the implied warranty of                    //
 | 
					
						
							|  |  |  | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                      //
 | 
					
						
							|  |  |  | // GNU General Public License V3 for more details.                                   //
 | 
					
						
							|  |  |  | //                                                                                   //
 | 
					
						
							|  |  |  | // You should have received a copy of the GNU General Public License                 //
 | 
					
						
							|  |  |  | // along with this program. If not, see <http://www.gnu.org/licenses/>.              //
 | 
					
						
							|  |  |  | ///////////////////////////////////////////////////////////////////////////////////////
 | 
					
						
							| 
									
										
										
										
											2022-03-01 17:17:56 +00:00
										 |  |  | /*
 | 
					
						
							|  |  |  |  * Reed-Solomon -- Reed-Solomon encoder / decoder library | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Copyright (c) 2014 Hard Consulting Corporation. | 
					
						
							|  |  |  |  * Copyright (c) 2006 Phil Karn, KA9Q | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * It may be used under the terms of the GNU Lesser General Public License (LGPL). | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  * Simplified version of https://github.com/pjkundert/ezpwd-reed-solomon which
 | 
					
						
							|  |  |  |  * seems to be the fastest open-source decoder. | 
					
						
							|  |  |  |  * | 
					
						
							|  |  |  |  */ | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #ifndef REEDSOLOMON_H
 | 
					
						
							|  |  |  | #define REEDSOLOMON_H
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #include <algorithm>
 | 
					
						
							|  |  |  | #include <array>
 | 
					
						
							|  |  |  | #include <cstdint>
 | 
					
						
							|  |  |  | #include <cstring>
 | 
					
						
							|  |  |  | #include <type_traits>
 | 
					
						
							|  |  |  | #include <vector>
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | // Preprocessor defines available:
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // EZPWD_NO_MOD_TAB -- define to force no "modnn" Galois modulo table acceleration
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //#define EZPWD_NO_MOD_TAB
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace ReedSolomon { | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // reed_solomon_base - Reed-Solomon codec generic base class
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | class reed_solomon_base { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual size_t datum() const = 0;   // a data element's bits
 | 
					
						
							|  |  |  |     virtual size_t symbol() const = 0;  // a symbol's bits
 | 
					
						
							|  |  |  |     virtual int size() const = 0;       // R-S block size (maximum total symbols)
 | 
					
						
							|  |  |  |     virtual int nroots() const = 0;     // R-S roots (parity symbols)
 | 
					
						
							|  |  |  |     virtual int load() const = 0;       // R-S net payload (data symbols)
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual ~reed_solomon_base() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     reed_solomon_base() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     // {en,de}code -- Compute/Correct errors/erasures in a Reed-Solomon encoded container
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     ///     For decode, optionally specify some known erasure positions (up to nroots()).  If
 | 
					
						
							|  |  |  |     /// non-empty 'erasures' is provided, it contains the positions of each erasure.  If a
 | 
					
						
							|  |  |  |     /// non-zero pointer to a 'position' vector is provided, its capacity will be increased to
 | 
					
						
							|  |  |  |     /// be capable of storing up to 'nroots()' ints; the actual deduced error locations will be
 | 
					
						
							|  |  |  |     /// returned.
 | 
					
						
							|  |  |  |     ///
 | 
					
						
							|  |  |  |     /// RETURN VALUE
 | 
					
						
							|  |  |  |     ///
 | 
					
						
							|  |  |  |     ///     Return -1 on error.  The encode returns the number of parity symbols produced;
 | 
					
						
							|  |  |  |     /// decode returns the number of symbols corrected.  Both errors and erasures are included,
 | 
					
						
							|  |  |  |     /// so long as they are actually different than the deduced value.  In other words, if a
 | 
					
						
							|  |  |  |     /// symbol is marked as an erasure but it actually turns out to be correct, it's index will
 | 
					
						
							|  |  |  |     /// NOT be included in the returned count, nor the modified erasure vector!
 | 
					
						
							|  |  |  |     ///
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual int encode(const uint8_t *data, int len, uint8_t *parity) const = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual int decode1(uint8_t *data, int len, uint8_t *parity, | 
					
						
							|  |  |  |                        const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     int decode(uint8_t *data, | 
					
						
							|  |  |  |                int len, | 
					
						
							|  |  |  |                int pad = 0,  // ignore 'pad' symbols at start of array
 | 
					
						
							|  |  |  |                const std::vector<int> &erasure = std::vector<int>(), | 
					
						
							|  |  |  |                std::vector<int> *position = 0) const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         return decode1((uint8_t*)(data + pad), len, (uint8_t*)(data + len), erasure, position); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // gfpoly - default field polynomial generator functor.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | template <int PLY> | 
					
						
							|  |  |  | struct gfpoly { | 
					
						
							|  |  |  |     int operator()(int sr) const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         if (sr == 0) { | 
					
						
							|  |  |  |             sr = 1; | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             sr <<= 1; | 
					
						
							|  |  |  |             if (sr & (1 << 8)) | 
					
						
							|  |  |  |                 sr ^= PLY; | 
					
						
							|  |  |  |             sr &= ((1 << 8) - 1); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return sr; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // class reed_solomon_tabs -- R-S tables common to all RS(NN,*) with same SYM, PRM and PLY
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | template <int PRM, class PLY> | 
					
						
							|  |  |  | class reed_solomon_tabs : public reed_solomon_base { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     typedef uint8_t symbol_t; | 
					
						
							|  |  |  |     static const size_t DATUM = 8;     // bits
 | 
					
						
							|  |  |  |     static const size_t SYMBOL = 8;  // bits / symbol
 | 
					
						
							|  |  |  |     static const int MM = 8; | 
					
						
							|  |  |  |     static const int SIZE = (1 << 8) - 1;  // maximum symbols in field
 | 
					
						
							|  |  |  |     static const int NN = SIZE; | 
					
						
							|  |  |  |     static const int A0 = SIZE; | 
					
						
							|  |  |  |     static const int MODS  // modulo table: 1/2 the symbol size squared, up to 4k
 | 
					
						
							|  |  |  | #if defined(EZPWD_NO_MOD_TAB)
 | 
					
						
							|  |  |  |         = 0; | 
					
						
							|  |  |  | #else
 | 
					
						
							|  |  |  |         = 8 > 8 ? (1 << 12) : (1 << 8 << 8 / 2); | 
					
						
							|  |  |  | #endif
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     static int iprim;  // initialized to -1, below
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | protected: | 
					
						
							|  |  |  |     static std::array<uint8_t, NN + 1> alpha_to; | 
					
						
							|  |  |  |     static std::array<uint8_t, NN + 1> index_of; | 
					
						
							|  |  |  |     static std::array<uint8_t, MODS> mod_of; | 
					
						
							|  |  |  |     virtual ~reed_solomon_tabs() {} | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     reed_solomon_tabs() : reed_solomon_base() | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         // Do init if not already done.  We check one value which is initialized to -1; this is
 | 
					
						
							|  |  |  |         // safe, 'cause the value will not be set 'til the initializing thread has completely
 | 
					
						
							|  |  |  |         // initialized the structure.  Worst case scenario: multiple threads will initialize
 | 
					
						
							|  |  |  |         // identically.  No mutex necessary.
 | 
					
						
							|  |  |  |         if (iprim >= 0) | 
					
						
							|  |  |  |             return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Generate Galois field lookup tables
 | 
					
						
							|  |  |  |         index_of[0] = A0;  // log(zero) = -inf
 | 
					
						
							|  |  |  |         alpha_to[A0] = 0;  // alpha**-inf = 0
 | 
					
						
							|  |  |  |         PLY poly; | 
					
						
							|  |  |  |         int sr = poly(0); | 
					
						
							|  |  |  |         for (int i = 0; i < NN; i++) { | 
					
						
							|  |  |  |             index_of[sr] = i; | 
					
						
							|  |  |  |             alpha_to[i] = sr; | 
					
						
							|  |  |  |             sr = poly(sr); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         // If it's not primitive, raise exception or abort
 | 
					
						
							|  |  |  |         if (sr != alpha_to[0]) { | 
					
						
							|  |  |  |             abort(); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Generate modulo table for some commonly used (non-trivial) values
 | 
					
						
							|  |  |  |         for (int x = NN; x < NN + MODS; ++x) | 
					
						
							|  |  |  |             mod_of[x - NN] = _modnn(x); | 
					
						
							|  |  |  |         // Find prim-th root of 1, index form, used in decoding.
 | 
					
						
							|  |  |  |         int iptmp = 1; | 
					
						
							|  |  |  |         while (iptmp % PRM != 0) | 
					
						
							|  |  |  |             iptmp += NN; | 
					
						
							|  |  |  |         iprim = iptmp / PRM; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     // modnn -- modulo replacement for galois field arithmetics, optionally w/ table acceleration
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     //  @x:         the value to reduce (will never be -'ve)
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     //  where
 | 
					
						
							|  |  |  |     //  MM = number of bits per symbol
 | 
					
						
							|  |  |  |     //  NN = (2^MM) - 1
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     //  Simple arithmetic modulo would return a wrong result for values >= 3 * NN
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     uint8_t _modnn(int x) const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         while (x >= NN) { | 
					
						
							|  |  |  |             x -= NN; | 
					
						
							|  |  |  |             x = (x >> MM) + (x & NN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return x; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     uint8_t modnn(int x) const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         while (x >= NN + MODS) { | 
					
						
							|  |  |  |             x -= NN; | 
					
						
							|  |  |  |             x = (x >> MM) + (x & NN); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         if (MODS && x >= NN) | 
					
						
							|  |  |  |             x = mod_of[x - NN]; | 
					
						
							|  |  |  |         return x; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // class reed_solomon - Reed-Solomon codec
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // @TYP:            A symbol datum; {en,de}code operates on arrays of these
 | 
					
						
							|  |  |  | // @DATUM:          Bits per datum (a TYP())
 | 
					
						
							|  |  |  | // @SYM{BOL}, MM:   Bits per symbol
 | 
					
						
							|  |  |  | // @NN:             Symbols per block (== (1<<MM)-1)
 | 
					
						
							|  |  |  | // @alpha_to:       log lookup table
 | 
					
						
							|  |  |  | // @index_of:       Antilog lookup table
 | 
					
						
							|  |  |  | // @genpoly:        Generator polynomial
 | 
					
						
							|  |  |  | // @NROOTS:         Number of generator roots = number of parity symbols
 | 
					
						
							|  |  |  | // @FCR:            First consecutive root, index form
 | 
					
						
							|  |  |  | // @PRM:            Primitive element, index form
 | 
					
						
							|  |  |  | // @iprim:          prim-th root of 1, index form
 | 
					
						
							|  |  |  | // @PLY:            The primitive generator polynominal functor
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //     All reed_solomon<T, ...> instances with the same template type parameters share a common
 | 
					
						
							|  |  |  | // (static) set of alpha_to, index_of and genpoly tables.  The first instance to be constructed
 | 
					
						
							|  |  |  | // initializes the tables.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //     Each specialized type of reed_solomon implements a specific encode/decode method
 | 
					
						
							|  |  |  | // appropriate to its datum 'TYP'.  When accessed via a generic reed_solomon_base pointer, only
 | 
					
						
							|  |  |  | // access via "safe" (size specifying) containers or iterators is available.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | template <int RTS, int FCR, int PRM, class PLY> | 
					
						
							|  |  |  | class reed_solomon : public reed_solomon_tabs<PRM, PLY> { | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     typedef reed_solomon_tabs<PRM, PLY> tabs_t; | 
					
						
							|  |  |  |     using tabs_t::A0; | 
					
						
							|  |  |  |     using tabs_t::DATUM; | 
					
						
							|  |  |  |     using tabs_t::MM; | 
					
						
							|  |  |  |     using tabs_t::NN; | 
					
						
							|  |  |  |     using tabs_t::SIZE; | 
					
						
							|  |  |  |     using tabs_t::SYMBOL; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     using tabs_t::iprim; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     using tabs_t::alpha_to; | 
					
						
							|  |  |  |     using tabs_t::index_of; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     using tabs_t::modnn; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     static const int NROOTS = RTS; | 
					
						
							|  |  |  |     static const int LOAD = SIZE - NROOTS;  // maximum non-parity symbol payload
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | protected: | 
					
						
							|  |  |  |     static std::array<uint8_t, NROOTS + 1> genpoly; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | public: | 
					
						
							|  |  |  |     virtual size_t datum() const { return DATUM; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual size_t symbol() const { return SYMBOL; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual int size() const { return SIZE; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual int nroots() const { return NROOTS; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual int load() const { return LOAD; } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     using reed_solomon_base::decode; | 
					
						
							|  |  |  |     virtual int decode1(uint8_t *data, int len, uint8_t *parity, | 
					
						
							|  |  |  |                        const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         return decode_mask(data, len, parity, erasure, position); | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     // decode_mask  -- mask INP data into valid SYMBOL data
 | 
					
						
							|  |  |  |     //
 | 
					
						
							|  |  |  |     ///     Incoming data may be in a variety of sizes, and may contain information beyond the
 | 
					
						
							|  |  |  |     /// R-S symbol capacity.  For example, we might use a 6-bit R-S symbol to correct the lower
 | 
					
						
							|  |  |  |     /// 6 bits of an 8-bit data character.  This would allow us to correct common substitution
 | 
					
						
							|  |  |  |     /// errors (such as '2' for '3', 'R' for 'T', 'n' for 'm').
 | 
					
						
							|  |  |  |     ///
 | 
					
						
							|  |  |  |     int decode_mask(uint8_t *data, int len, | 
					
						
							|  |  |  |                     uint8_t *parity = 0,  // either 0, or pointer to all parity symbols
 | 
					
						
							|  |  |  |                     const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         if (!parity) { | 
					
						
							|  |  |  |             len -= NROOTS; | 
					
						
							|  |  |  |             parity = data + len; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         int corrects; | 
					
						
							|  |  |  |         if (!erasure.size() && !position) { | 
					
						
							|  |  |  |             // No erasures, and error position info not wanted.
 | 
					
						
							|  |  |  |             corrects = decode(data, len, parity); | 
					
						
							|  |  |  |         } else { | 
					
						
							|  |  |  |             // Either erasure location info specified, or resultant error position info wanted;
 | 
					
						
							|  |  |  |             // Prepare pos (a temporary, if no position vector provided), and copy any provided
 | 
					
						
							|  |  |  |             // erasure positions.  After number of corrections is known, resize the position
 | 
					
						
							|  |  |  |             // vector.  Thus, we use any supplied erasure info, and optionally return any
 | 
					
						
							|  |  |  |             // correction position info separately.
 | 
					
						
							|  |  |  |             std::vector<int> _pos; | 
					
						
							|  |  |  |             std::vector<int> &pos = position ? *position : _pos; | 
					
						
							|  |  |  |             pos.resize(std::max(size_t(NROOTS), erasure.size())); | 
					
						
							|  |  |  |             std::copy(erasure.begin(), erasure.end(), pos.begin()); | 
					
						
							|  |  |  |             corrects = decode(data, len, parity, &pos.front(), erasure.size()); | 
					
						
							|  |  |  |             if (corrects > int(pos.size())) { | 
					
						
							|  |  |  |                 return -1; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             pos.resize(std::max(0, corrects)); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return corrects; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual ~reed_solomon() | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     reed_solomon() : reed_solomon_tabs<PRM, PLY>() | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         // We check one element of the array; this is safe, 'cause the value will not be
 | 
					
						
							|  |  |  |         // initialized 'til the initializing thread has completely initialized the array.  Worst
 | 
					
						
							|  |  |  |         // case scenario: multiple threads will initialize identically.  No mutex necessary.
 | 
					
						
							|  |  |  |         if (genpoly[0]) | 
					
						
							|  |  |  |             return; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         std::array<uint8_t, NROOTS + 1> tmppoly;  // uninitialized
 | 
					
						
							|  |  |  |         // Form RS code generator polynomial from its roots.  Only lower-index entries are
 | 
					
						
							|  |  |  |         // consulted, when computing subsequent entries; only index 0 needs initialization.
 | 
					
						
							|  |  |  |         tmppoly[0] = 1; | 
					
						
							|  |  |  |         for (int i = 0, root = FCR * PRM; i < NROOTS; i++, root += PRM) { | 
					
						
							|  |  |  |             tmppoly[i + 1] = 1; | 
					
						
							|  |  |  |             // Multiply tmppoly[] by  @**(root + x)
 | 
					
						
							|  |  |  |             for (int j = i; j > 0; j--) { | 
					
						
							|  |  |  |                 if (tmppoly[j] != 0) | 
					
						
							|  |  |  |                     tmppoly[j] = tmppoly[j - 1] ^ alpha_to[modnn(index_of[tmppoly[j]] + root)]; | 
					
						
							|  |  |  |                 else | 
					
						
							|  |  |  |                     tmppoly[j] = tmppoly[j - 1]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             // tmppoly[0] can never be zero
 | 
					
						
							|  |  |  |             tmppoly[0] = alpha_to[modnn(index_of[tmppoly[0]] + root)]; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         // convert NROOTS entries of tmppoly[] to genpoly[] in index form for quicker encoding,
 | 
					
						
							|  |  |  |         // in reverse order so genpoly[0] is last element initialized.
 | 
					
						
							|  |  |  |         for (int i = NROOTS; i >= 0; --i) | 
					
						
							|  |  |  |             genpoly[i] = index_of[tmppoly[i]]; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     virtual int encode(const uint8_t *data, int len, uint8_t *parity)  // at least nroots
 | 
					
						
							|  |  |  |         const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         // Check length parameter for validity
 | 
					
						
							| 
									
										
										
										
											2022-03-01 17:54:12 +00:00
										 |  |  |         for (int i = 0; i < NROOTS; i++) | 
					
						
							|  |  |  |             parity[i] = 0; | 
					
						
							| 
									
										
										
										
											2022-03-01 17:17:56 +00:00
										 |  |  |         for (int i = 0; i < len; i++) { | 
					
						
							|  |  |  |             uint8_t feedback = index_of[data[i] ^ parity[0]]; | 
					
						
							|  |  |  |             if (feedback != A0) { | 
					
						
							|  |  |  |                 for (int j = 1; j < NROOTS; j++) | 
					
						
							|  |  |  |                     parity[j] ^= alpha_to[modnn(feedback + genpoly[NROOTS - j])]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             std::rotate(parity, parity + 1, parity + NROOTS); | 
					
						
							|  |  |  |             if (feedback != A0) | 
					
						
							|  |  |  |                 parity[NROOTS - 1] = alpha_to[modnn(feedback + genpoly[0])]; | 
					
						
							|  |  |  |             else | 
					
						
							|  |  |  |                 parity[NROOTS - 1] = 0; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return NROOTS; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     int decode(uint8_t *data, int len, | 
					
						
							|  |  |  |                uint8_t *parity,    // Requires: at least NROOTS
 | 
					
						
							|  |  |  |                int *eras_pos = 0,  // Capacity: at least NROOTS
 | 
					
						
							|  |  |  |                int no_eras = 0,    // Maximum:  at most  NROOTS
 | 
					
						
							|  |  |  |                uint8_t *corr = 0)  // Capacity: at least NROOTS
 | 
					
						
							|  |  |  |         const | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |         typedef std::array<uint8_t, NROOTS> typ_nroots; | 
					
						
							|  |  |  |         typedef std::array<uint8_t, NROOTS + 1> typ_nroots_1; | 
					
						
							|  |  |  |         typedef std::array<int, NROOTS> int_nroots; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         typ_nroots_1 lambda{{0}}; | 
					
						
							|  |  |  |         typ_nroots syn; | 
					
						
							|  |  |  |         typ_nroots_1 b; | 
					
						
							|  |  |  |         typ_nroots_1 t; | 
					
						
							|  |  |  |         typ_nroots_1 omega; | 
					
						
							|  |  |  |         int_nroots root; | 
					
						
							|  |  |  |         typ_nroots_1 reg; | 
					
						
							|  |  |  |         int_nroots loc; | 
					
						
							|  |  |  |         int count = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Check length parameter and erasures for validity
 | 
					
						
							|  |  |  |         int pad = NN - NROOTS - len; | 
					
						
							|  |  |  |         if (no_eras) { | 
					
						
							|  |  |  |             if (no_eras > NROOTS) { | 
					
						
							|  |  |  |                 return -1; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             for (int i = 0; i < no_eras; ++i) { | 
					
						
							|  |  |  |                 if (eras_pos[i] < 0 || eras_pos[i] >= len + NROOTS) { | 
					
						
							|  |  |  |                     return -1; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // form the syndromes; i.e., evaluate data(x) at roots of g(x)
 | 
					
						
							|  |  |  |         for (int i = 0; i < NROOTS; i++) | 
					
						
							|  |  |  |             syn[i] = data[0]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (int j = 1; j < len; j++) { | 
					
						
							|  |  |  |             for (int i = 0; i < NROOTS; i++) { | 
					
						
							|  |  |  |                 if (syn[i] == 0) { | 
					
						
							|  |  |  |                     syn[i] = data[j]; | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     syn[i] = data[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (int j = 0; j < NROOTS; j++) { | 
					
						
							|  |  |  |             for (int i = 0; i < NROOTS; i++) { | 
					
						
							|  |  |  |                 if (syn[i] == 0) { | 
					
						
							|  |  |  |                     syn[i] = parity[j]; | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     syn[i] = parity[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Convert syndromes to index form, checking for nonzero condition
 | 
					
						
							|  |  |  |         uint8_t syn_error = 0; | 
					
						
							|  |  |  |         for (int i = 0; i < NROOTS; i++) { | 
					
						
							|  |  |  |             syn_error |= syn[i]; | 
					
						
							|  |  |  |             syn[i] = index_of[syn[i]]; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         int deg_lambda = 0; | 
					
						
							|  |  |  |         int deg_omega = 0; | 
					
						
							|  |  |  |         int r = no_eras; | 
					
						
							|  |  |  |         int el = no_eras; | 
					
						
							|  |  |  |         if (!syn_error) { | 
					
						
							|  |  |  |             // if syndrome is zero, data[] is a codeword and there are no errors to correct.
 | 
					
						
							|  |  |  |             count = 0; | 
					
						
							|  |  |  |             goto finish; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         lambda[0] = 1; | 
					
						
							|  |  |  |         if (no_eras > 0) { | 
					
						
							|  |  |  |             // Init lambda to be the erasure locator polynomial.  Convert erasure positions
 | 
					
						
							|  |  |  |             // from index into data, to index into Reed-Solomon block.
 | 
					
						
							|  |  |  |             lambda[1] = alpha_to[modnn(PRM * (NN - 1 - (eras_pos[0] + pad)))]; | 
					
						
							|  |  |  |             for (int i = 1; i < no_eras; i++) { | 
					
						
							|  |  |  |                 uint8_t u = modnn(PRM * (NN - 1 - (eras_pos[i] + pad))); | 
					
						
							|  |  |  |                 for (int j = i + 1; j > 0; j--) { | 
					
						
							|  |  |  |                     uint8_t tmp = index_of[lambda[j - 1]]; | 
					
						
							|  |  |  |                     if (tmp != A0) { | 
					
						
							|  |  |  |                         lambda[j] ^= alpha_to[modnn(u + tmp)]; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         for (int i = 0; i < NROOTS + 1; i++) | 
					
						
							|  |  |  |             b[i] = index_of[lambda[i]]; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         // Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         while (++r <= NROOTS) {  // r is the step number
 | 
					
						
							|  |  |  |             // Compute discrepancy at the r-th step in poly-form
 | 
					
						
							|  |  |  |             uint8_t discr_r = 0; | 
					
						
							|  |  |  |             for (int i = 0; i < r; i++) { | 
					
						
							|  |  |  |                 if ((lambda[i] != 0) && (syn[r - i - 1] != A0)) { | 
					
						
							|  |  |  |                     discr_r ^= alpha_to[modnn(index_of[lambda[i]] + syn[r - i - 1])]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             discr_r = index_of[discr_r];  // Index form
 | 
					
						
							|  |  |  |             if (discr_r == A0) { | 
					
						
							|  |  |  |                 // 2 lines below: B(x) <-- x*B(x)
 | 
					
						
							|  |  |  |                 // Rotate the last element of b[NROOTS+1] to b[0]
 | 
					
						
							|  |  |  |                 std::rotate(b.begin(), b.begin() + NROOTS, b.end()); | 
					
						
							|  |  |  |                 b[0] = A0; | 
					
						
							|  |  |  |             } else { | 
					
						
							|  |  |  |                 // 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x)
 | 
					
						
							|  |  |  |                 t[0] = lambda[0]; | 
					
						
							|  |  |  |                 for (int i = 0; i < NROOTS; i++) { | 
					
						
							|  |  |  |                     if (b[i] != A0) { | 
					
						
							|  |  |  |                         t[i + 1] = lambda[i + 1] ^ alpha_to[modnn(discr_r + b[i])]; | 
					
						
							|  |  |  |                     } else | 
					
						
							|  |  |  |                         t[i + 1] = lambda[i + 1]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 if (2 * el <= r + no_eras - 1) { | 
					
						
							|  |  |  |                     el = r + no_eras - el; | 
					
						
							|  |  |  |                     // 2 lines below: B(x) <-- inv(discr_r) * lambda(x)
 | 
					
						
							|  |  |  |                     for (int i = 0; i <= NROOTS; i++) { | 
					
						
							|  |  |  |                         b[i] = ((lambda[i] == 0) ? A0 : modnn(index_of[lambda[i]] - discr_r + NN)); | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } else { | 
					
						
							|  |  |  |                     // 2 lines below: B(x) <-- x*B(x)
 | 
					
						
							|  |  |  |                     std::rotate(b.begin(), b.begin() + NROOTS, b.end()); | 
					
						
							|  |  |  |                     b[0] = A0; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |                 lambda = t; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         // Convert lambda to index form and compute deg(lambda(x))
 | 
					
						
							|  |  |  |         for (int i = 0; i < NROOTS + 1; i++) { | 
					
						
							|  |  |  |             lambda[i] = index_of[lambda[i]]; | 
					
						
							|  |  |  |             if (lambda[i] != NN) | 
					
						
							|  |  |  |                 deg_lambda = i; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         // Find roots of error+erasure locator polynomial by Chien search
 | 
					
						
							|  |  |  |         reg = lambda; | 
					
						
							|  |  |  |         count = 0;  // Number of roots of lambda(x)
 | 
					
						
							|  |  |  |         for (int i = 1, k = iprim - 1; i <= NN; i++, k = modnn(k + iprim)) { | 
					
						
							|  |  |  |             uint8_t q = 1;  // lambda[0] is always 0
 | 
					
						
							|  |  |  |             for (int j = deg_lambda; j > 0; j--) { | 
					
						
							|  |  |  |                 if (reg[j] != A0) { | 
					
						
							|  |  |  |                     reg[j] = modnn(reg[j] + j); | 
					
						
							|  |  |  |                     q ^= alpha_to[reg[j]]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             if (q != 0) | 
					
						
							|  |  |  |                 continue;  // Not a root
 | 
					
						
							|  |  |  |             // store root (index-form) and error location number
 | 
					
						
							|  |  |  |             root[count] = i; | 
					
						
							|  |  |  |             loc[count] = k; | 
					
						
							|  |  |  |             // If we've already found max possible roots, abort the search to save time
 | 
					
						
							|  |  |  |             if (++count == deg_lambda) | 
					
						
							|  |  |  |                 break; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         if (deg_lambda != count) { | 
					
						
							|  |  |  |             // deg(lambda) unequal to number of roots => uncorrectable error detected
 | 
					
						
							|  |  |  |             count = -1; | 
					
						
							|  |  |  |             goto finish; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         // Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo x**NROOTS). in
 | 
					
						
							|  |  |  |         // index form. Also find deg(omega).
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         deg_omega = deg_lambda - 1; | 
					
						
							|  |  |  |         for (int i = 0; i <= deg_omega; i++) { | 
					
						
							|  |  |  |             uint8_t tmp = 0; | 
					
						
							|  |  |  |             for (int j = i; j >= 0; j--) { | 
					
						
							|  |  |  |                 if ((syn[i - j] != A0) && (lambda[j] != A0)) | 
					
						
							|  |  |  |                     tmp ^= alpha_to[modnn(syn[i - j] + lambda[j])]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             omega[i] = index_of[tmp]; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         // Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(fcr-1)
 | 
					
						
							|  |  |  |         // and den = lambda_pr(inv(X(l))) all in poly-form
 | 
					
						
							|  |  |  |         //
 | 
					
						
							|  |  |  |         for (int j = count - 1; j >= 0; j--) { | 
					
						
							|  |  |  |             uint8_t num1 = 0; | 
					
						
							|  |  |  |             for (int i = deg_omega; i >= 0; i--) { | 
					
						
							|  |  |  |                 if (omega[i] != A0) | 
					
						
							|  |  |  |                     num1 ^= alpha_to[modnn(omega[i] + i * root[j])]; | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             uint8_t num2 = alpha_to[modnn(root[j] * (FCR - 1) + NN)]; | 
					
						
							|  |  |  |             uint8_t den = 0; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |             // lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i]
 | 
					
						
							|  |  |  |             for (int i = std::min(deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) { | 
					
						
							|  |  |  |                 if (lambda[i + 1] != A0) { | 
					
						
							|  |  |  |                     den ^= alpha_to[modnn(lambda[i + 1] + i * root[j])]; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |             // Apply error to data.  Padding ('pad' unused symbols) begin at index 0.
 | 
					
						
							|  |  |  |             if (num1 != 0) { | 
					
						
							|  |  |  |                 if (loc[j] < pad) { | 
					
						
							|  |  |  |                     // If the computed error position is in the 'pad' (the unused portion of the
 | 
					
						
							|  |  |  |                     // R-S data capacity), then our solution has failed -- we've computed a
 | 
					
						
							|  |  |  |                     // correction location outside of the data and parity we've been provided!
 | 
					
						
							|  |  |  |                     count = -1; | 
					
						
							|  |  |  |                     goto finish; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |                 uint8_t cor = alpha_to[modnn(index_of[num1] + index_of[num2] + NN - index_of[den])]; | 
					
						
							|  |  |  |                 // Store the error correction pattern, if a correction buffer is available
 | 
					
						
							|  |  |  |                 if (corr) | 
					
						
							|  |  |  |                     corr[j] = cor; | 
					
						
							|  |  |  |                 // If a data/parity buffer is given and the error is inside the message or
 | 
					
						
							|  |  |  |                 // parity data, correct it
 | 
					
						
							|  |  |  |                 if (loc[j] < (NN - NROOTS)) { | 
					
						
							|  |  |  |                     if (data) { | 
					
						
							|  |  |  |                         data[loc[j] - pad] ^= cor; | 
					
						
							|  |  |  |                     } | 
					
						
							|  |  |  |                 } else if (loc[j] < NN) { | 
					
						
							|  |  |  |                     if (parity) | 
					
						
							|  |  |  |                         parity[loc[j] - (NN - NROOTS)] ^= cor; | 
					
						
							|  |  |  |                 } | 
					
						
							|  |  |  |             } | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     finish: | 
					
						
							|  |  |  |         if (eras_pos != NULL) { | 
					
						
							|  |  |  |             for (int i = 0; i < count; i++) | 
					
						
							|  |  |  |                 eras_pos[i] = loc[i] - pad; | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         return count; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // Define the static reed_solomon...<...> members; allowed in header for template types.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //     The reed_solomon_tags<...>::iprim < 0 is used to indicate to the first instance that the
 | 
					
						
							|  |  |  | // static tables require initialization.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | template <int PRM, class PLY> | 
					
						
							|  |  |  | int reed_solomon_tabs<PRM, PLY>::iprim = -1; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <int PRM, class PLY> | 
					
						
							|  |  |  | std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::NN + 1> reed_solomon_tabs<PRM, PLY>::alpha_to; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <int PRM, class PLY> | 
					
						
							|  |  |  | std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::NN + 1> reed_solomon_tabs<PRM, PLY>::index_of; | 
					
						
							|  |  |  | template <int PRM, class PLY> | 
					
						
							|  |  |  | std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::MODS> reed_solomon_tabs<PRM, PLY>::mod_of; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | template <int RTS, int FCR, int PRM, class PLY> | 
					
						
							|  |  |  | std::array<uint8_t, reed_solomon<RTS, FCR, PRM, PLY>::NROOTS + 1> reed_solomon<RTS, FCR, PRM, PLY>::genpoly; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // RS( ... ) -- Define a reed-solomon codec
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // @SYMBOLS:        Total number of symbols; must be a power of 2 minus 1, eg 2^8-1 == 255
 | 
					
						
							|  |  |  | // @PAYLOAD:        The maximum number of non-parity symbols, eg 253 ==> 2 parity symbols
 | 
					
						
							|  |  |  | // @POLY:           A primitive polynomial appropriate to the SYMBOLS size
 | 
					
						
							|  |  |  | // @FCR:            The first consecutive root of the Reed-Solomon generator polynomial
 | 
					
						
							|  |  |  | // @PRIM:           The primitive root of the generator polynomial
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | // RS<SYMBOLS, PAYLOAD> -- Standard partial specializations for Reed-Solomon codec type access
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //     Normally, Reed-Solomon codecs are described with terms like RS(255,252).  Obtain various
 | 
					
						
							|  |  |  | // standard Reed-Solomon codecs using macros of a similar form, eg. RS<255, 252>. Standard PLY,
 | 
					
						
							|  |  |  | // FCR and PRM values are provided for various SYMBOL sizes, along with appropriate basic types
 | 
					
						
							|  |  |  | // capable of holding all internal Reed-Solomon tabular data.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //     In order to provide "default initialization" of const RS<...> types, a user-provided
 | 
					
						
							|  |  |  | // default constructor must be provided.
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | template <size_t SYMBOLS, size_t PAYLOAD> | 
					
						
							|  |  |  | struct RS; | 
					
						
							|  |  |  | template <size_t PAYLOAD> | 
					
						
							|  |  |  | struct RS<255, PAYLOAD> : public ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>> | 
					
						
							|  |  |  | { | 
					
						
							|  |  |  |     RS() | 
					
						
							|  |  |  |         : ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>>() | 
					
						
							|  |  |  |     { | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | }  // namespace ReedSolomon
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | #endif  // REEDSOLOMON_H
 |