///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB                                   //
//                                                                               //
// This program is free software; you can redistribute it and/or modify          //
// it under the terms of the GNU General Public License as published by          //
// the Free Software Foundation as version 3 of the License, or                  //
//                                                                               //
// This program is distributed in the hope that it will be useful,               //
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
// GNU General Public License V3 for more details.                               //
//                                                                               //
// You should have received a copy of the GNU General Public License             //
// along with this program. If not, see .          //
///////////////////////////////////////////////////////////////////////////////////
#include 
#include 
#include 
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "bladerfgui.h"
#include "bladerfinput.h"
#include "bladerfthread.h"
#include "bladerfserializer.h"
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgConfigureBladerf, Message)
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgReportBladerf, Message)
BladerfInput::Settings::Settings() :
	m_centerFrequency(435000*1000),
	m_devSampleRate(3072000),
	m_lnaGain(0),
	m_vga1(20),
	m_vga2(9),
	m_bandwidth(1500000),
	m_log2Decim(0),
	m_fcPos(FC_POS_INFRA),
	m_xb200(false),
	m_xb200Path(BLADERF_XB200_MIX),
	m_xb200Filter(BLADERF_XB200_AUTO_1DB)
{
}
void BladerfInput::Settings::resetToDefaults()
{
	m_centerFrequency = 435000*1000;
	m_devSampleRate = 3072000;
	m_lnaGain = 0;
	m_vga1 = 20;
	m_vga2 = 9;
	m_bandwidth = 1500000;
	m_log2Decim = 0;
	m_fcPos = FC_POS_INFRA;
		m_xb200 = false;
		m_xb200Path = BLADERF_XB200_MIX;
		m_xb200Filter = BLADERF_XB200_AUTO_1DB;
}
QByteArray BladerfInput::Settings::serialize() const
{
	BladeRFSerializer::BladeRFData data;
	data.m_data.m_lnaGain = m_lnaGain;
	data.m_data.m_RxGain1 = m_vga1;
	data.m_data.m_RxGain2 = m_vga2;
	data.m_data.m_log2Decim = m_log2Decim;
	data.m_xb200 = m_xb200;
	data.m_xb200Path = (int) m_xb200Path;
	data.m_xb200Filter = (int) m_xb200Filter;
	data.m_data.m_bandwidth = m_bandwidth;
	data.m_data.m_fcPosition = (int) m_fcPos;
	data.m_data.m_frequency = m_centerFrequency;
	data.m_data.m_rate = m_devSampleRate;
	QByteArray byteArray;
	BladeRFSerializer::writeSerializedData(data, byteArray);
	return byteArray;
}
bool BladerfInput::Settings::deserialize(const QByteArray& serializedData)
{
	BladeRFSerializer::BladeRFData data;
	bool valid = BladeRFSerializer::readSerializedData(serializedData, data);
	m_lnaGain = data.m_data.m_lnaGain;
	m_vga1 = data.m_data.m_RxGain1;
	m_vga2 = data.m_data.m_RxGain2;
	m_log2Decim = data.m_data.m_log2Decim;
	m_xb200 = data.m_xb200;
	m_xb200Path = (bladerf_xb200_path) data.m_xb200Path;
	m_xb200Filter = (bladerf_xb200_filter) data.m_xb200Filter;
	m_bandwidth = data.m_data.m_bandwidth;
	m_fcPos = (fcPos_t) data.m_data.m_fcPosition;
	m_centerFrequency = data.m_data.m_frequency;
	m_devSampleRate = data.m_data.m_rate;
	return valid;
}
BladerfInput::BladerfInput() :
	m_settings(),
	m_dev(0),
	m_bladerfThread(0),
	m_deviceDescription("BladeRF")
{
}
BladerfInput::~BladerfInput()
{
	stop();
}
bool BladerfInput::init(const Message& cmd)
{
	return false;
}
bool BladerfInput::start(int device)
{
	QMutexLocker mutexLocker(&m_mutex);
	if (m_dev != 0)
	{
		stop();
	}
	int res;
	int fpga_loaded;
	if (!m_sampleFifo.setSize(96000 * 4))
	{
		qCritical("Could not allocate SampleFifo");
		return false;
	}
	if ((m_dev = open_bladerf_from_serial(0)) == 0) // TODO: fix; Open first available device as there is no proper handling for multiple devices
	{
		qCritical("could not open BladeRF");
		return false;
	}
    fpga_loaded = bladerf_is_fpga_configured(m_dev);
    if (fpga_loaded < 0)
    {
    	qCritical("Failed to check FPGA state: %s",
                  bladerf_strerror(fpga_loaded));
    	return false;
    }
    else if (fpga_loaded == 0)
    {
    	qCritical("The device's FPGA is not loaded.");
    	return false;
    }
    // TODO: adjust USB transfer data according to sample rate
    if ((res = bladerf_sync_config(m_dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000)) < 0)
    {
    	qCritical("bladerf_sync_config with return code %d", res);
    	goto failed;
    }
    if ((res = bladerf_enable_module(m_dev, BLADERF_MODULE_RX, true)) < 0)
    {
    	qCritical("bladerf_enable_module with return code %d", res);
    	goto failed;
    }
	if((m_bladerfThread = new BladerfThread(m_dev, &m_sampleFifo)) == NULL) {
		qFatal("out of memory");
		goto failed;
	}
	m_bladerfThread->startWork();
	mutexLocker.unlock();
	applySettings(m_settings, true);
	qDebug("BladerfInput::startInput: started");
	return true;
failed:
	stop();
	return false;
}
void BladerfInput::stop()
{
	QMutexLocker mutexLocker(&m_mutex);
	if(m_bladerfThread != 0)
	{
		m_bladerfThread->stopWork();
		delete m_bladerfThread;
		m_bladerfThread = 0;
	}
	if(m_dev != 0)
	{
		bladerf_close(m_dev);
		m_dev = 0;
	}
	m_deviceDescription.clear();
}
const QString& BladerfInput::getDeviceDescription() const
{
	return m_deviceDescription;
}
int BladerfInput::getSampleRate() const
{
	int rate = m_settings.m_devSampleRate;
	return (rate / (1<setSamplerate(m_settings.m_devSampleRate);
			}
		}
	}
	if ((m_settings.m_bandwidth != settings.m_bandwidth) || force)
	{
		m_settings.m_bandwidth = settings.m_bandwidth;
		if(m_dev != 0)
		{
			unsigned int actualBandwidth;
			if( bladerf_set_bandwidth(m_dev, BLADERF_MODULE_RX, m_settings.m_bandwidth, &actualBandwidth) < 0)
			{
				qCritical("could not set bandwidth: %d", m_settings.m_bandwidth);
			}
			else
			{
				qDebug() << "bladerf_set_bandwidth(BLADERF_MODULE_RX) actual bandwidth is " << actualBandwidth;
			}
		}
	}
	if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
	{
		m_settings.m_log2Decim = settings.m_log2Decim;
		forwardChange = true;
		if(m_dev != 0)
		{
			m_bladerfThread->setLog2Decimation(m_settings.m_log2Decim);
			qDebug() << "BladerfInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos);
			qDebug() << "BladerfInput: set fc pos (enum) to " << (int) m_settings.m_fcPos;
		}
	}
	if (m_settings.m_centerFrequency != settings.m_centerFrequency)
	{
		forwardChange = true;
	}
	m_settings.m_centerFrequency = settings.m_centerFrequency;
	qint64 deviceCenterFrequency = m_settings.m_centerFrequency;
	qint64 f_img = deviceCenterFrequency;
	qint64 f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
	if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == FC_POS_CENTER))
	{
		deviceCenterFrequency = m_settings.m_centerFrequency;
		f_img = deviceCenterFrequency;
		f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
	}
	else
	{
		if (m_settings.m_fcPos == FC_POS_INFRA)
		{
			deviceCenterFrequency = m_settings.m_centerFrequency + (m_settings.m_devSampleRate / 4);
			f_img = deviceCenterFrequency + m_settings.m_devSampleRate/2;
			f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
		}
		else if (m_settings.m_fcPos == FC_POS_SUPRA)
		{
			deviceCenterFrequency = m_settings.m_centerFrequency - (m_settings.m_devSampleRate / 4);
			f_img = deviceCenterFrequency - m_settings.m_devSampleRate/2;
			f_cut = deviceCenterFrequency - m_settings.m_bandwidth/2;
		}
	}
	if (m_dev != NULL)
	{
		if (bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, deviceCenterFrequency ) != 0)
		{
			qDebug("bladerf_set_frequency(%lld) failed", m_settings.m_centerFrequency);
		}
	}
	if (forwardChange)
	{
		int sampleRate = m_settings.m_devSampleRate/(1<push(notif);
	}
	qDebug() << "BladerfInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
			<< " device center freq: " << deviceCenterFrequency << " Hz"
			<< " device sample rate: " << m_settings.m_devSampleRate << "Hz"
			<< " Actual sample rate: " << m_settings.m_devSampleRate/(1<