///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB.                                  //
//                                                                               //
// This program is free software; you can redistribute it and/or modify          //
// it under the terms of the GNU General Public License as published by          //
// the Free Software Foundation as version 3 of the License, or                  //
// (at your option) any later version.                                           //
//                                                                               //
// This program is distributed in the hope that it will be useful,               //
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
// GNU General Public License V3 for more details.                               //
//                                                                               //
// You should have received a copy of the GNU General Public License             //
// along with this program. If not, see .          //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTERPOLATOR_H
#define INCLUDE_INTERPOLATOR_H
#ifdef USE_SSE2
#include 
#endif
#include "dsp/dsptypes.h"
#include "export.h"
#include 
class SDRBASE_API Interpolator {
public:
	Interpolator();
	~Interpolator();
	void create(int phaseSteps, double sampleRate, double cutoff, double nbTapsPerPhase = 4.5);
	void free();
	// Original code allowed for upsampling, but was never used that way
	// The decimation factor should always be lower than 2 for proper work
	bool decimate(Real *distance, const Complex& next, Complex* result)
	{
		advanceFilter(next);
		*distance -= 1.0;
		if (*distance >= 1.0) {
			return false;
		}
		doInterpolate((int) floor(*distance * (Real)m_phaseSteps), result);
		return true;
	}
	// interpolation simplified from the generalized resampler
	bool interpolate(Real *distance, const Complex& next, Complex* result)
	{
	    bool consumed = false;
        if (*distance >= 1.0)
        {
            advanceFilter(next);
            *distance -= 1.0;
            consumed = true;
        }
        doInterpolate((int)floor(*distance * (Real)m_phaseSteps), result);
        return consumed;
	}
	// original interpolator which is actually an arbitrary rational resampler P/Q for any positive P, Q
	// sampling frequency must be the highest of the two
	bool resample(Real* distance, const Complex& next, bool* consumed, Complex* result)
	{
		while (*distance >= 1.0)
		{
			if (!(*consumed))
			{
				advanceFilter(next);
				*distance -= 1.0;
				*consumed = true;
			}
			else
			{
				return false;
			}
		}
		doInterpolate((int)floor(*distance * (Real)m_phaseSteps), result);
		return true;
	}
private:
	float* m_taps;
	float* m_alignedTaps;
	float* m_taps2;
	float* m_alignedTaps2;
	std::vector m_samples;
	int m_ptr;
	int m_phaseSteps;
	int m_nTaps;
	static void createPolyphaseLowPass(
	    std::vector& taps,
	    int phaseSteps,
	    double gain,
	    double sampleRateHz,
	    double cutoffFreqHz,
	    double transitionWidthHz,
	    double oobAttenuationdB);
    static void createPolyphaseLowPass(
        std::vector& taps,
        int phaseSteps,
        double gain,
        double sampleRateHz,
        double cutoffFreqHz,
        double nbTapsPerPhase);
	void createTaps(int nTaps, double sampleRate, double cutoff, std::vector* taps);
	void advanceFilter(const Complex& next)
	{
		m_ptr--;
		if (m_ptr < 0) {
		    m_ptr = m_nTaps - 1;
		}
		m_samples[m_ptr] = next;
	}
    void advanceFilter()
    {
        m_ptr--;
        if (m_ptr < 0) {
            m_ptr = m_nTaps - 1;
        }
        m_samples[m_ptr].real(0.0);
        m_samples[m_ptr].imag(0.0);
    }
	void doInterpolate(int phase, Complex* result)
	{
		if (phase < 0) {
		    phase = 0;
		}
#if USE_SSE2
		// beware of the ringbuffer
		if(m_ptr == 0) {
			// only one straight block
			const float* src = (const float*)&m_samples[0];
			const __m128* filter = (const __m128*)&m_alignedTaps[phase * m_nTaps * 2];
			__m128 sum = _mm_setzero_ps();
			int todo = m_nTaps / 2;
			for(int i = 0; i < todo; i++) {
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(src), *filter));
				src += 4;
				filter += 1;
			}
			// add upper half to lower half and store
			_mm_storel_pi((__m64*)result, _mm_add_ps(sum, _mm_shuffle_ps(sum, _mm_setzero_ps(), _MM_SHUFFLE(1, 0, 3, 2))));
		} else {
			// two blocks
			const float* src = (const float*)&m_samples[m_ptr];
			const __m128* filter = (const __m128*)&m_alignedTaps[phase * m_nTaps * 2];
			__m128 sum = _mm_setzero_ps();
			// first block
			int block = m_nTaps - m_ptr;
			int todo = block / 2;
			if(block & 1)
				todo++;
			for(int i = 0; i < todo; i++) {
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(src), *filter));
				src += 4;
				filter += 1;
			}
			if(block & 1) {
				// one sample beyond the end -> switch coefficient table
				filter = (const __m128*)&m_alignedTaps2[phase * m_nTaps * 2 + todo * 4 - 4];
			}
			// second block
			src = (const float*)&m_samples[0];
			block = m_ptr;
			todo = block / 2;
			for(int i = 0; i < todo; i++) {
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(src), *filter));
				src += 4;
				filter += 1;
			}
			if(block & 1) {
				// one sample remaining
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadl_pi(_mm_setzero_ps(), (const __m64*)src), filter[0]));
			}
			// add upper half to lower half and store
			_mm_storel_pi((__m64*)result, _mm_add_ps(sum, _mm_shuffle_ps(sum, _mm_setzero_ps(), _MM_SHUFFLE(1, 0, 3, 2))));
		}
#else
		int sample = m_ptr;
		const Real* coeff = &m_alignedTaps[phase * m_nTaps * 2];
		Real rAcc = 0;
		Real iAcc = 0;
		for (int i = 0; i < m_nTaps; i++) {
			rAcc += *coeff * m_samples[sample].real();
			iAcc += *coeff * m_samples[sample].imag();
			sample = (sample + 1) % m_nTaps;
			coeff += 2;
		}
		*result = Complex(rAcc, iAcc);
#endif
	}
};
#endif // INCLUDE_INTERPOLATOR_H