///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2015 Edouard Griffiths, F4EXB                                   //
//                                                                               //
// This program is free software; you can redistribute it and/or modify          //
// it under the terms of the GNU General Public License as published by          //
// the Free Software Foundation as version 3 of the License, or                  //
//                                                                               //
// This program is distributed in the hope that it will be useful,               //
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
// GNU General Public License V3 for more details.                               //
//                                                                               //
// You should have received a copy of the GNU General Public License             //
// along with this program. If not, see .          //
///////////////////////////////////////////////////////////////////////////////////
#include 
#include 
#include 
#include "util/simpleserializer.h"
#include "dsp/dspcommands.h"
#include "dsp/dspengine.h"
#include "bladerfgui.h"
#include "bladerfinput.h"
#include "bladerfthread.h"
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgConfigureBladerf, Message)
MESSAGE_CLASS_DEFINITION(BladerfInput::MsgReportBladerf, Message)
BladerfInput::BladerfInput() :
	m_settings(),
	m_dev(0),
	m_bladerfThread(0),
	m_deviceDescription("BladeRF")
{
}
BladerfInput::~BladerfInput()
{
	stop();
}
bool BladerfInput::init(const Message& cmd)
{
	return false;
}
bool BladerfInput::start(int device)
{
	QMutexLocker mutexLocker(&m_mutex);
	if (m_dev != 0)
	{
		stop();
	}
	int res;
	int fpga_loaded;
	if (!m_sampleFifo.setSize(96000 * 4))
	{
		qCritical("Could not allocate SampleFifo");
		return false;
	}
	if ((m_dev = open_bladerf_from_serial(0)) == 0) // TODO: fix; Open first available device as there is no proper handling for multiple devices
	{
		qCritical("could not open BladeRF");
		return false;
	}
    fpga_loaded = bladerf_is_fpga_configured(m_dev);
    if (fpga_loaded < 0)
    {
    	qCritical("Failed to check FPGA state: %s",
                  bladerf_strerror(fpga_loaded));
    	return false;
    }
    else if (fpga_loaded == 0)
    {
    	qCritical("The device's FPGA is not loaded.");
    	return false;
    }
    // TODO: adjust USB transfer data according to sample rate
    if ((res = bladerf_sync_config(m_dev, BLADERF_MODULE_RX, BLADERF_FORMAT_SC16_Q11, 64, 8192, 32, 10000)) < 0)
    {
    	qCritical("bladerf_sync_config with return code %d", res);
    	goto failed;
    }
    if ((res = bladerf_enable_module(m_dev, BLADERF_MODULE_RX, true)) < 0)
    {
    	qCritical("bladerf_enable_module with return code %d", res);
    	goto failed;
    }
	if((m_bladerfThread = new BladerfThread(m_dev, &m_sampleFifo)) == NULL) {
		qFatal("out of memory");
		goto failed;
	}
	m_bladerfThread->startWork();
	mutexLocker.unlock();
	applySettings(m_settings, true);
	qDebug("BladerfInput::startInput: started");
	return true;
failed:
	stop();
	return false;
}
void BladerfInput::stop()
{
	QMutexLocker mutexLocker(&m_mutex);
	if(m_bladerfThread != 0)
	{
		m_bladerfThread->stopWork();
		delete m_bladerfThread;
		m_bladerfThread = 0;
	}
	if(m_dev != 0)
	{
		bladerf_close(m_dev);
		m_dev = 0;
	}
}
const QString& BladerfInput::getDeviceDescription() const
{
	return m_deviceDescription;
}
int BladerfInput::getSampleRate() const
{
	int rate = m_settings.m_devSampleRate;
	return (rate / (1<configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
	}
	if (m_settings.m_iqCorrection != settings.m_iqCorrection)
	{
		m_settings.m_iqCorrection = settings.m_iqCorrection;
		DSPEngine::instance()->configureCorrections(m_settings.m_dcBlock, m_settings.m_iqCorrection);
	}
	if ((m_settings.m_lnaGain != settings.m_lnaGain) || force)
	{
		m_settings.m_lnaGain = settings.m_lnaGain;
		if (m_dev != 0)
		{
			if(bladerf_set_lna_gain(m_dev, getLnaGain(m_settings.m_lnaGain)) != 0)
			{
				qDebug("bladerf_set_lna_gain() failed");
			}
			else
			{
				qDebug() << "BladerfInput: LNA gain set to " << getLnaGain(m_settings.m_lnaGain);
			}
		}
	}
	if ((m_settings.m_vga1 != settings.m_vga1) || force)
	{
		m_settings.m_vga1 = settings.m_vga1;
		if (m_dev != 0)
		{
			if(bladerf_set_rxvga1(m_dev, m_settings.m_vga1) != 0)
			{
				qDebug("bladerf_set_rxvga1() failed");
			}
			else
			{
				qDebug() << "BladerfInput: VGA1 gain set to " << m_settings.m_vga1;
			}
		}
	}
	if ((m_settings.m_vga2 != settings.m_vga2) || force)
	{
		m_settings.m_vga2 = settings.m_vga2;
		if(m_dev != 0)
		{
			if(bladerf_set_rxvga2(m_dev, m_settings.m_vga2) != 0)
			{
				qDebug("bladerf_set_rxvga2() failed");
			}
			else
			{
				qDebug() << "BladerfInput: VGA2 gain set to " << m_settings.m_vga2;
			}
		}
	}
	if ((m_settings.m_xb200 != settings.m_xb200) || force)
	{
		m_settings.m_xb200 = settings.m_xb200;
		if (m_dev != 0)
		{
			if (m_settings.m_xb200)
			{
				if (bladerf_expansion_attach(m_dev, BLADERF_XB_200) != 0)
				{
					qDebug("bladerf_expansion_attach(xb200) failed");
				}
				else
				{
					qDebug() << "BladerfInput: Attach XB200";
				}
			}
			else
			{
				if (bladerf_expansion_attach(m_dev, BLADERF_XB_NONE) != 0)
				{
					qDebug("bladerf_expansion_attach(none) failed");
				}
				else
				{
					qDebug() << "BladerfInput: Detach XB200";
				}
			}
		}
	}
	if ((m_settings.m_xb200Path != settings.m_xb200Path) || force)
	{
		m_settings.m_xb200Path = settings.m_xb200Path;
		if (m_dev != 0)
		{
			if(bladerf_xb200_set_path(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Path) != 0)
			{
				qDebug("bladerf_xb200_set_path(BLADERF_MODULE_RX) failed");
			}
			else
			{
				qDebug() << "BladerfInput: set xb200 path to " << m_settings.m_xb200Path;
			}
		}
	}
	if ((m_settings.m_xb200Filter != settings.m_xb200Filter) || force)
	{
		m_settings.m_xb200Filter = settings.m_xb200Filter;
		if (m_dev != 0)
		{
			if(bladerf_xb200_set_filterbank(m_dev, BLADERF_MODULE_RX, m_settings.m_xb200Filter) != 0)
			{
				qDebug("bladerf_xb200_set_filterbank(BLADERF_MODULE_RX) failed");
			}
			else
			{
				qDebug() << "BladerfInput: set xb200 filter to " << m_settings.m_xb200Filter;
			}
		}
	}
	if ((m_settings.m_devSampleRate != settings.m_devSampleRate) || force)
	{
		m_settings.m_devSampleRate = settings.m_devSampleRate;
		forwardChange = true;
		if (m_dev != 0)
		{
			unsigned int actualSamplerate;
			if (bladerf_set_sample_rate(m_dev, BLADERF_MODULE_RX, m_settings.m_devSampleRate, &actualSamplerate) < 0)
			{
				qCritical("could not set sample rate: %d", m_settings.m_devSampleRate);
			}
			else
			{
				qDebug() << "bladerf_set_sample_rate(BLADERF_MODULE_RX) actual sample rate is " << actualSamplerate;
				m_bladerfThread->setSamplerate(m_settings.m_devSampleRate);
			}
		}
	}
	if ((m_settings.m_bandwidth != settings.m_bandwidth) || force)
	{
		m_settings.m_bandwidth = settings.m_bandwidth;
		if(m_dev != 0)
		{
			unsigned int actualBandwidth;
			if( bladerf_set_bandwidth(m_dev, BLADERF_MODULE_RX, m_settings.m_bandwidth, &actualBandwidth) < 0)
			{
				qCritical("could not set bandwidth: %d", m_settings.m_bandwidth);
			}
			else
			{
				qDebug() << "bladerf_set_bandwidth(BLADERF_MODULE_RX) actual bandwidth is " << actualBandwidth;
			}
		}
	}
	if ((m_settings.m_log2Decim != settings.m_log2Decim) || force)
	{
		m_settings.m_log2Decim = settings.m_log2Decim;
		forwardChange = true;
		if(m_dev != 0)
		{
			m_bladerfThread->setLog2Decimation(m_settings.m_log2Decim);
			qDebug() << "BladerfInput: set decimation to " << (1<setFcPos((int) m_settings.m_fcPos);
			qDebug() << "BladerfInput: set fc pos (enum) to " << (int) m_settings.m_fcPos;
		}
	}
	if (m_settings.m_centerFrequency != settings.m_centerFrequency)
	{
		forwardChange = true;
	}
	m_settings.m_centerFrequency = settings.m_centerFrequency;
	qint64 deviceCenterFrequency = m_settings.m_centerFrequency;
	qint64 f_img = deviceCenterFrequency;
	qint64 f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
	if ((m_settings.m_log2Decim == 0) || (m_settings.m_fcPos == BladeRFSettings::FC_POS_CENTER))
	{
		deviceCenterFrequency = m_settings.m_centerFrequency;
		f_img = deviceCenterFrequency;
		f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
	}
	else
	{
		if (m_settings.m_fcPos == BladeRFSettings::FC_POS_INFRA)
		{
			deviceCenterFrequency = m_settings.m_centerFrequency + (m_settings.m_devSampleRate / 4);
			f_img = deviceCenterFrequency + m_settings.m_devSampleRate/2;
			f_cut = deviceCenterFrequency + m_settings.m_bandwidth/2;
		}
		else if (m_settings.m_fcPos == BladeRFSettings::FC_POS_SUPRA)
		{
			deviceCenterFrequency = m_settings.m_centerFrequency - (m_settings.m_devSampleRate / 4);
			f_img = deviceCenterFrequency - m_settings.m_devSampleRate/2;
			f_cut = deviceCenterFrequency - m_settings.m_bandwidth/2;
		}
	}
	if (m_dev != NULL)
	{
		if (bladerf_set_frequency( m_dev, BLADERF_MODULE_RX, deviceCenterFrequency ) != 0)
		{
			qDebug("bladerf_set_frequency(%lld) failed", m_settings.m_centerFrequency);
		}
	}
	if (forwardChange)
	{
		int sampleRate = m_settings.m_devSampleRate/(1<getInputMessageQueue()->push(notif);
	}
	qDebug() << "BladerfInput::applySettings: center freq: " << m_settings.m_centerFrequency << " Hz"
			<< " device center freq: " << deviceCenterFrequency << " Hz"
			<< " device sample rate: " << m_settings.m_devSampleRate << "Hz"
			<< " Actual sample rate: " << m_settings.m_devSampleRate/(1<