#include "gui/glspectrumgui.h"
#include "dsp/fftwindow.h"
#include "dsp/spectrumvis.h"
#include "gui/glspectrum.h"
#include "util/simpleserializer.h"
#include "ui_glspectrumgui.h"

GLSpectrumGUI::GLSpectrumGUI(QWidget* parent) :
	QWidget(parent),
	ui(new Ui::GLSpectrumGUI),
	m_messageQueueToVis(0),
	m_spectrumVis(0),
	m_glSpectrum(0),
	m_fftSize(1024),
	m_fftOverlap(0),
	m_fftWindow(FFTWindow::Hamming),
	m_refLevel(0),
	m_powerRange(100),
	m_decay(0),
	m_histogramLateHoldoff(1),
	m_histogramStroke(40),
	m_displayGridIntensity(5),
	m_displayTraceIntensity(50),
	m_displayWaterfall(true),
	m_invertedWaterfall(false),
	m_displayMaxHold(false),
	m_displayCurrent(false),
	m_displayHistogram(false),
	m_displayGrid(false),
	m_invert(true),
	m_averagingMode(AvgModeNone),
	m_averagingIndex(0),
	m_averagingMaxScale(5),
	m_averagingNb(0)
{
	ui->setupUi(this);
	on_linscale_toggled(false);
	ui->refLevel->clear();
	for(int ref = 0; ref >= -110; ref -= 5)
		ui->refLevel->addItem(QString("%1").arg(ref));
	ui->levelRange->clear();
	for(int range = 100; range >= 5; range -= 5)
		ui->levelRange->addItem(QString("%1").arg(range));
	setAveragingCombo();
	connect(&m_messageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()));
}

GLSpectrumGUI::~GLSpectrumGUI()
{
	delete ui;
}

void GLSpectrumGUI::setBuddies(MessageQueue* messageQueue, SpectrumVis* spectrumVis, GLSpectrum* glSpectrum)
{
	m_messageQueueToVis = messageQueue;
	m_spectrumVis = spectrumVis;
	m_glSpectrum = glSpectrum;
	m_glSpectrum->setMessageQueueToGUI(&m_messageQueue);
	applySettings();
}

void GLSpectrumGUI::resetToDefaults()
{
	m_fftSize = 1024;
	m_fftOverlap = 0;
	m_fftWindow = FFTWindow::Hamming;
	m_refLevel = 0;
	m_powerRange = 100;
	m_decay = 0;
	m_histogramLateHoldoff = 1;
	m_histogramStroke = 40;
	m_displayGridIntensity = 5,
	m_displayWaterfall = true;
	m_invertedWaterfall = false;
	m_displayMaxHold = false;
	m_displayHistogram = false;
	m_displayGrid = false;
	m_invert = true;
	m_averagingMode = AvgModeNone;
	m_averagingIndex = 0;
	m_linear = false;
	applySettings();
}

QByteArray GLSpectrumGUI::serialize() const
{
	SimpleSerializer s(1);
	s.writeS32(1, m_fftSize);
	s.writeS32(2, m_fftOverlap);
	s.writeS32(3, m_fftWindow);
	s.writeReal(4, m_refLevel);
	s.writeReal(5, m_powerRange);
	s.writeBool(6, m_displayWaterfall);
	s.writeBool(7, m_invertedWaterfall);
	s.writeBool(8, m_displayMaxHold);
	s.writeBool(9, m_displayHistogram);
	s.writeS32(10, m_decay);
	s.writeBool(11, m_displayGrid);
	s.writeBool(12, m_invert);
	s.writeS32(13, m_displayGridIntensity);
	s.writeS32(14, m_histogramLateHoldoff);
	s.writeS32(15, m_histogramStroke);
	s.writeBool(16, m_displayCurrent);
	s.writeS32(17, m_displayTraceIntensity);
	s.writeReal(18, m_glSpectrum->getWaterfallShare());
	s.writeS32(19, (int) m_averagingMode);
	s.writeS32(20, (qint32) getAveragingValue(m_averagingIndex));
	s.writeBool(21, m_linear);
	return s.final();
}

bool GLSpectrumGUI::deserialize(const QByteArray& data)
{
	SimpleDeserializer d(data);

	if(!d.isValid()) {
		resetToDefaults();
		return false;
	}

	int tmp;

	if(d.getVersion() == 1) {
		d.readS32(1, &m_fftSize, 1024);
		d.readS32(2, &m_fftOverlap, 0);
		d.readS32(3, &m_fftWindow, FFTWindow::Hamming);
		d.readReal(4, &m_refLevel, 0);
		d.readReal(5, &m_powerRange, 100);
		d.readBool(6, &m_displayWaterfall, true);
		d.readBool(7, &m_invertedWaterfall, false);
		d.readBool(8, &m_displayMaxHold, false);
		d.readBool(9, &m_displayHistogram, false);
		d.readS32(10, &m_decay, 0);
		d.readBool(11, &m_displayGrid, false);
		d.readBool(12, &m_invert, true);
		d.readS32(13, &m_displayGridIntensity, 5);
		d.readS32(14, &m_histogramLateHoldoff, 1);
		d.readS32(15, &m_histogramStroke, 40);
		d.readBool(16, &m_displayCurrent, false);
		d.readS32(17, &m_displayTraceIntensity, 50);
		Real waterfallShare;
		d.readReal(18, &waterfallShare, 0.66);
		d.readS32(19, &tmp, 0);
		m_averagingMode = tmp < 0 ? AvgModeNone : tmp > 3 ? AvgModeMax : (AveragingMode) tmp;
		d.readS32(20, &tmp, 0);
		m_averagingIndex = getAveragingIndex(tmp);
	    m_averagingNb = getAveragingValue(m_averagingIndex);
	    d.readBool(21, &m_linear, false);

		m_glSpectrum->setWaterfallShare(waterfallShare);
		applySettings();
		return true;
	} else {
		resetToDefaults();
		return false;
	}
}

void GLSpectrumGUI::applySettings()
{
	ui->fftWindow->setCurrentIndex(m_fftWindow);
	for(int i = 0; i < 6; i++) {
		if(m_fftSize == (1 << (i + 7))) {
			ui->fftSize->setCurrentIndex(i);
			break;
		}
	}
	ui->refLevel->setCurrentIndex(-m_refLevel / 5);
	ui->levelRange->setCurrentIndex((100 - m_powerRange) / 5);
	ui->averaging->setCurrentIndex(m_averagingIndex);
	ui->averagingMode->setCurrentIndex((int) m_averagingMode);
	ui->linscale->setChecked(m_linear);
	ui->decay->setSliderPosition(m_decay);
	ui->holdoff->setSliderPosition(m_histogramLateHoldoff);
	ui->stroke->setSliderPosition(m_histogramStroke);
	ui->waterfall->setChecked(m_displayWaterfall);
	ui->maxHold->setChecked(m_displayMaxHold);
	ui->current->setChecked(m_displayCurrent);
	ui->histogram->setChecked(m_displayHistogram);
	ui->invert->setChecked(m_invert);
	ui->grid->setChecked(m_displayGrid);
	ui->gridIntensity->setSliderPosition(m_displayGridIntensity);

	ui->decay->setToolTip(QString("Decay: %1").arg(m_decay));
	ui->holdoff->setToolTip(QString("Holdoff: %1").arg(m_histogramLateHoldoff));
	ui->stroke->setToolTip(QString("Stroke: %1").arg(m_histogramStroke));
	ui->gridIntensity->setToolTip(QString("Grid intensity: %1").arg(m_displayGridIntensity));
	ui->traceIntensity->setToolTip(QString("Trace intensity: %1").arg(m_displayTraceIntensity));

	m_glSpectrum->setDisplayWaterfall(m_displayWaterfall);
	m_glSpectrum->setInvertedWaterfall(m_invertedWaterfall);
	m_glSpectrum->setDisplayMaxHold(m_displayMaxHold);
	m_glSpectrum->setDisplayCurrent(m_displayCurrent);
	m_glSpectrum->setDisplayHistogram(m_displayHistogram);
	m_glSpectrum->setDecay(m_decay);
	m_glSpectrum->setHistoLateHoldoff(m_histogramLateHoldoff);
	m_glSpectrum->setHistoStroke(m_histogramStroke);
	m_glSpectrum->setInvertedWaterfall(m_invert);
	m_glSpectrum->setDisplayGrid(m_displayGrid);
	m_glSpectrum->setDisplayGridIntensity(m_displayGridIntensity);
	m_glSpectrum->setLinear(m_linear);

	if (m_spectrumVis) {
	    m_spectrumVis->configure(m_messageQueueToVis,
	            m_fftSize,
	            m_fftOverlap,
	            m_averagingNb,
	            m_averagingMode,
	            (FFTWindow::Function)m_fftWindow,
	            m_linear);
	}

	setAveragingToolitp();
}

void GLSpectrumGUI::on_fftWindow_currentIndexChanged(int index)
{
	m_fftWindow = index;
	if(m_spectrumVis != 0) {
        m_spectrumVis->configure(m_messageQueueToVis,
                m_fftSize,
                m_fftOverlap,
                m_averagingNb,
                m_averagingMode,
                (FFTWindow::Function)m_fftWindow,
                m_linear);
	}
}

void GLSpectrumGUI::on_fftSize_currentIndexChanged(int index)
{
	m_fftSize = 1 << (7 + index);
	if(m_spectrumVis != 0) {
	    m_spectrumVis->configure(m_messageQueueToVis,
	            m_fftSize,
	            m_fftOverlap,
	            m_averagingNb,
                m_averagingMode,
	            (FFTWindow::Function)m_fftWindow,
	            m_linear);
	}
	setAveragingToolitp();
}

void GLSpectrumGUI::on_averagingMode_currentIndexChanged(int index)
{
    m_averagingMode = index < 0 ? AvgModeNone : index > 3 ? AvgModeMax : (AveragingMode) index;

    if (m_averagingMode == AvgModeMoving)
    {
        m_averagingMaxScale = 2;
        setAveragingCombo();
        m_averagingNb = m_averagingNb > 1000 ? 1000 : m_averagingNb;
    }
    else
    {
        m_averagingMaxScale = 5;
        setAveragingCombo();
    }

    if(m_spectrumVis != 0) {
        m_spectrumVis->configure(m_messageQueueToVis,
                m_fftSize,
                m_fftOverlap,
                m_averagingNb,
                m_averagingMode,
                (FFTWindow::Function)m_fftWindow,
                m_linear);
    }

    if (m_glSpectrum != 0)
    {
        if ((m_averagingMode == AvgModeFixed) || (m_averagingMode == AvgModeMax)) {
            m_glSpectrum->setTimingRate(m_averagingNb == 0 ? 1 : m_averagingNb);
        } else {
            m_glSpectrum->setTimingRate(1);
        }
    }
}

void GLSpectrumGUI::on_averaging_currentIndexChanged(int index)
{
    m_averagingIndex = index;
    m_averagingNb = getAveragingValue(index);

    if(m_spectrumVis != 0) {
        m_spectrumVis->configure(m_messageQueueToVis,
                m_fftSize,
                m_fftOverlap,
                m_averagingNb,
                m_averagingMode,
                (FFTWindow::Function)m_fftWindow,
                m_linear);
    }

    if (m_glSpectrum != 0)
    {
        if ((m_averagingMode == AvgModeFixed) || (m_averagingMode == AvgModeMax)) {
            m_glSpectrum->setTimingRate(m_averagingNb == 0 ? 1 : m_averagingNb);
        } else {
            m_glSpectrum->setTimingRate(1);
        }
    }

    setAveragingToolitp();
}

void GLSpectrumGUI::on_linscale_toggled(bool checked)
{
    m_linear = checked;

    if(m_spectrumVis != 0) {
        m_spectrumVis->configure(m_messageQueueToVis,
                m_fftSize,
                m_fftOverlap,
                m_averagingNb,
                m_averagingMode,
                (FFTWindow::Function)m_fftWindow,
                m_linear);
    }

    if(m_glSpectrum != 0)
    {
        Real refLevel = m_linear ? pow(10.0, m_refLevel/10.0) : m_refLevel;
        Real powerRange = m_linear ? pow(10.0, m_refLevel/10.0) :  m_powerRange;
        qDebug("GLSpectrumGUI::on_linscale_toggled: refLevel: %e powerRange: %e", refLevel, powerRange);
        m_glSpectrum->setReferenceLevel(refLevel);
        m_glSpectrum->setPowerRange(powerRange);
        m_glSpectrum->setLinear(m_linear);
    }
}

void GLSpectrumGUI::on_refLevel_currentIndexChanged(int index)
{
	m_refLevel = 0 - index * 5;

	if(m_glSpectrum != 0)
	{
	    Real refLevel = m_linear ? pow(10.0, m_refLevel/10.0) : m_refLevel;
        Real powerRange = m_linear ? pow(10.0, m_refLevel/10.0) :  m_powerRange;
	    qDebug("GLSpectrumGUI::on_refLevel_currentIndexChanged: refLevel: %e ", refLevel);
	    m_glSpectrum->setReferenceLevel(refLevel);
        m_glSpectrum->setPowerRange(powerRange);
	}
}

void GLSpectrumGUI::on_levelRange_currentIndexChanged(int index)
{
	m_powerRange = 100 - index * 5;

	if(m_glSpectrum != 0)
	{
        Real refLevel = m_linear ? pow(10.0, m_refLevel/10.0) : m_refLevel;
	    Real powerRange = m_linear ? pow(10.0, m_refLevel/10.0) :  m_powerRange;
	    qDebug("GLSpectrumGUI::on_levelRange_currentIndexChanged: powerRange: %e", powerRange);
        m_glSpectrum->setReferenceLevel(refLevel);
	    m_glSpectrum->setPowerRange(powerRange);
	}
}

void GLSpectrumGUI::on_decay_valueChanged(int index)
{
	m_decay = index;
	ui->decay->setToolTip(QString("Decay: %1").arg(m_decay));
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDecay(m_decay);
	}
}

void GLSpectrumGUI::on_holdoff_valueChanged(int index)
{
	if (index < 0) {
		return;
	}
	m_histogramLateHoldoff = index;
	//ui->holdoff->setToolTip(QString("Holdoff: %1").arg(m_histogramLateHoldoff));
	if(m_glSpectrum != 0) {
		applySettings();
	}
}

void GLSpectrumGUI::on_stroke_valueChanged(int index)
{
	if (index < 4) {
		return;
	}
	m_histogramStroke = index;
	//ui->stroke->setToolTip(QString("Stroke: %1").arg(m_histogramStroke));
	if(m_glSpectrum != 0) {
		applySettings();
	}
}

void GLSpectrumGUI::on_waterfall_toggled(bool checked)
{
	m_displayWaterfall = checked;
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayWaterfall(m_displayWaterfall);
	}
}

void GLSpectrumGUI::on_histogram_toggled(bool checked)
{
	m_displayHistogram = checked;
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayHistogram(m_displayHistogram);
	}
}

void GLSpectrumGUI::on_maxHold_toggled(bool checked)
{
	m_displayMaxHold = checked;
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayMaxHold(m_displayMaxHold);
	}
}

void GLSpectrumGUI::on_current_toggled(bool checked)
{
	m_displayCurrent = checked;
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayCurrent(m_displayCurrent);
	}
}

void GLSpectrumGUI::on_invert_toggled(bool checked)
{
	m_invert = checked;
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setInvertedWaterfall(m_invert);
	}
}

void GLSpectrumGUI::on_grid_toggled(bool checked)
{
	m_displayGrid = checked;
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayGrid(m_displayGrid);
	}
}

void GLSpectrumGUI::on_gridIntensity_valueChanged(int index)
{
	m_displayGridIntensity = index;
	ui->gridIntensity->setToolTip(QString("Grid intensity: %1").arg(m_displayGridIntensity));
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayGridIntensity(m_displayGridIntensity);
	}
}

void GLSpectrumGUI::on_traceIntensity_valueChanged(int index)
{
	m_displayTraceIntensity = index;
	ui->traceIntensity->setToolTip(QString("Trace intensity: %1").arg(m_displayTraceIntensity));
	if(m_glSpectrum != 0) {
	    m_glSpectrum->setDisplayTraceIntensity(m_displayTraceIntensity);
	}
}

void GLSpectrumGUI::on_clearSpectrum_clicked(bool checked __attribute__((unused)))
{
	if(m_glSpectrum != 0) {
	    m_glSpectrum->clearSpectrumHistogram();
	}
}

int GLSpectrumGUI::getAveragingIndex(int averagingValue) const
{
    if (averagingValue <= 1) {
        return 0;
    }

    int v = averagingValue;
    int j = 0;

    for (int i = 0; i <= m_averagingMaxScale; i++)
    {
        if (v < 20)
        {
            if (v < 2) {
                j = 0;
            } else if (v < 5) {
                j = 1;
            } else if (v < 10) {
                j = 2;
            } else {
                j = 3;
            }

            return 3*i + j;
        }

        v /= 10;
    }

    return 3*m_averagingMaxScale + 3;
}

int GLSpectrumGUI::getAveragingValue(int averagingIndex) const
{
    if (averagingIndex <= 0) {
        return 1;
    }

    int v = averagingIndex - 1;
    int m = pow(10.0, v/3 > m_averagingMaxScale ? m_averagingMaxScale : v/3);
    int x;

    if (v % 3 == 0) {
        x = 2;
    } else if (v % 3 == 1) {
        x = 5;
    } else if (v % 3 == 2) {
        x = 10;
    }

    return x * m;
}

void GLSpectrumGUI::setAveragingCombo()
{
    int index = ui->averaging->currentIndex();
    ui->averaging->clear();
    ui->averaging->addItem(QString("1"));

    for (int i = 0; i <= m_averagingMaxScale; i++)
    {
        QString s;
        int m = pow(10.0, i);
        int x = 2*m;
        setNumberStr(x, s);
        ui->averaging->addItem(s);
        x = 5*m;
        setNumberStr(x, s);
        ui->averaging->addItem(s);
        x = 10*m;
        setNumberStr(x, s);
        ui->averaging->addItem(s);
    }

    ui->averaging->setCurrentIndex(index >= ui->averaging->count() ? ui->averaging->count() - 1 : index);
}

void GLSpectrumGUI::setNumberStr(int n, QString& s)
{
    if (n < 1000) {
        s = tr("%1").arg(n);
    } else if (n < 100000) {
        s = tr("%1k").arg(n/1000);
    } else if (n < 1000000) {
        s = tr("%1e5").arg(n/100000);
    } else if (n < 1000000000) {
        s = tr("%1M").arg(n/1000000);
    } else {
        s = tr("%1G").arg(n/1000000000);
    }
}

void GLSpectrumGUI::setNumberStr(float v, int decimalPlaces, QString& s)
{
    if (v < 1e-6) {
        s = tr("%1n").arg(v*1e9, 0, 'f', decimalPlaces);
    } else if (v < 1e-3) {
        s = tr("%1ยต").arg(v*1e6, 0, 'f', decimalPlaces);
    } else if (v < 1.0) {
        s = tr("%1m").arg(v*1e3, 0, 'f', decimalPlaces);
    } else if (v < 1e3) {
        s = tr("%1").arg(v, 0, 'f', decimalPlaces);
    } else if (v < 1e6) {
        s = tr("%1k").arg(v*1e-3, 0, 'f', decimalPlaces);
    } else if (v < 1e9) {
        s = tr("%1M").arg(v*1e-6, 0, 'f', decimalPlaces);
    } else {
        s = tr("%1G").arg(v*1e-9, 0, 'f', decimalPlaces);
    }
}

void GLSpectrumGUI::setAveragingToolitp()
{
    if (m_glSpectrum)
    {
        QString s;
        float averagingTime = (m_fftSize * (m_averagingNb == 0 ? 1 : m_averagingNb)) / (float) m_glSpectrum->getSampleRate();
        setNumberStr(averagingTime, 2, s);
        ui->averaging->setToolTip(QString("Number of averaging samples (avg time: %1s)").arg(s));
    }
    else
    {
        ui->averaging->setToolTip(QString("Number of averaging samples"));
    }
}

bool GLSpectrumGUI::handleMessage(const Message& message)
{
    if (GLSpectrum::MsgReportSampleRate::match(message))
    {
        setAveragingToolitp();
        return true;
    }

    return false;
}

void GLSpectrumGUI::handleInputMessages()
{
    Message* message;

    while ((message = m_messageQueue.pop()) != 0)
    {
        qDebug("GLSpectrumGUI::handleInputMessages: message: %s", message->getIdentifier());

        if (handleMessage(*message))
        {
            delete message;
        }
    }
}