/////////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017 Edouard Griffiths, F4EXB // // // // This program is free software; you can redistribute it and/or modify // // it under the terms of the GNU General Public License as published by // // the Free Software Foundation as version 3 of the License, or // // // // This program is distributed in the hope that it will be useful, // // but WITHOUT ANY WARRANTY; without even the implied warranty of // // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License V3 for more details. // // // // You should have received a copy of the GNU General Public License // // along with this program. If not, see . // /////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "udpsinkfec.h" MESSAGE_CLASS_DEFINITION(UDPSinkFECWorker::MsgUDPFECEncodeAndSend, Message) MESSAGE_CLASS_DEFINITION(UDPSinkFECWorker::MsgConfigureRemoteAddress, Message) UDPSinkFEC::UDPSinkFEC() : m_sampleRate(48000), m_sampleBytes(SDR_TX_SAMP_SZ <= 16 ? 2 : 4), m_sampleBits(SDR_TX_SAMP_SZ), m_nbSamples(0), m_nbBlocksFEC(0), m_txDelayRatio(0.0), m_txDelay(0), m_txBlockIndex(0), m_txBlocksIndex(0), m_frameCount(0), m_sampleIndex(0) { memset((char *) m_txBlocks, 0, 4*256*sizeof(SuperBlock)); memset((char *) &m_superBlock, 0, sizeof(SuperBlock)); m_currentMetaFEC.init(); m_bufMeta = new uint8_t[m_udpSize]; m_buf = new uint8_t[m_udpSize]; m_udpThread = new QThread(); m_udpWorker = new UDPSinkFECWorker(); m_udpWorker->moveToThread(m_udpThread); connect(m_udpThread, SIGNAL(started()), m_udpWorker, SLOT(process())); connect(m_udpWorker, SIGNAL(finished()), m_udpThread, SLOT(quit())); m_udpThread->start(); } UDPSinkFEC::~UDPSinkFEC() { m_udpWorker->stop(); m_udpThread->wait(); delete[] m_buf; delete[] m_bufMeta; delete m_udpWorker; delete m_udpThread; } void UDPSinkFEC::setTxDelay(float txDelayRatio) { // delay is calculated from the fraction of the nominal UDP block process time // frame size: 127 * (126 or 63 samples depending on I or Q sample bytes of 2 or 4 bytes respectively) // divided by sample rate gives the frame process time // divided by the number of actual blocks including FEC blocks gives the block (i.e. UDP block) process time m_txDelayRatio = txDelayRatio; int samplesPerBlock = bytesPerBlock / (m_sampleBytes*2); double delay = ((127*samplesPerBlock*txDelayRatio) / m_sampleRate)/(128 + m_nbBlocksFEC); m_txDelay = delay * 1e6; qDebug() << "UDPSinkFEC::setTxDelay: txDelay: " << txDelayRatio << " m_txDelay: " << m_txDelay << " us"; } void UDPSinkFEC::setNbBlocksFEC(uint32_t nbBlocksFEC) { qDebug() << "UDPSinkFEC::setNbBlocksFEC: nbBlocksFEC: " << nbBlocksFEC; m_nbBlocksFEC = nbBlocksFEC; setTxDelay(m_txDelayRatio); } void UDPSinkFEC::setSampleRate(uint32_t sampleRate) { qDebug() << "UDPSinkFEC::setSampleRate: sampleRate: " << sampleRate; m_sampleRate = sampleRate; setTxDelay(m_txDelayRatio); } void UDPSinkFEC::setRemoteAddress(const QString& address, uint16_t port) { qDebug() << "UDPSinkFEC::setRemoteAddress: address: " << address << " port: " << port; m_udpWorker->setRemoteAddress(address, port); } void UDPSinkFEC::write(const SampleVector::iterator& begin, uint32_t sampleChunkSize) { //qDebug("UDPSinkFEC::write(: %u samples", sampleChunkSize); const SampleVector::iterator end = begin + sampleChunkSize; SampleVector::iterator it = begin; while (it != end) { int inRemainingSamples = end - it; if (m_txBlockIndex == 0) // Tx block index 0 is a block with only meta data { struct timeval tv; MetaDataFEC metaData; gettimeofday(&tv, 0); metaData.m_centerFrequency = 0; // frequency not set by stream metaData.m_sampleRate = m_sampleRate; metaData.m_sampleBytes = m_sampleBytes & 0xF; metaData.m_sampleBits = m_sampleBits; metaData.m_nbOriginalBlocks = m_nbOriginalBlocks; metaData.m_nbFECBlocks = m_nbBlocksFEC; metaData.m_tv_sec = tv.tv_sec; metaData.m_tv_usec = tv.tv_usec; boost::crc_32_type crc32; crc32.process_bytes(&metaData, 20); metaData.m_crc32 = crc32.checksum(); memset((char *) &m_superBlock, 0, sizeof(m_superBlock)); m_superBlock.header.frameIndex = m_frameCount; m_superBlock.header.blockIndex = m_txBlockIndex; memcpy((char *) &m_superBlock.protectedBlock, (const char *) &metaData, sizeof(MetaDataFEC)); if (!(metaData == m_currentMetaFEC)) { qDebug() << "UDPSinkFEC::write: meta: " << "|" << metaData.m_centerFrequency << ":" << metaData.m_sampleRate << ":" << (int) (metaData.m_sampleBytes & 0xF) << ":" << (int) metaData.m_sampleBits << "|" << (int) metaData.m_nbOriginalBlocks << ":" << (int) metaData.m_nbFECBlocks << "|" << metaData.m_tv_sec << ":" << metaData.m_tv_usec << "|"; m_currentMetaFEC = metaData; } m_txBlocks[m_txBlocksIndex][0] = m_superBlock; m_txBlockIndex = 1; // next Tx block with data } int samplesPerBlock = bytesPerBlock / (m_sampleBytes*2); if (m_sampleIndex + inRemainingSamples < samplesPerBlock) // there is still room in the current super block { if (sizeof(Sample) == m_sampleBytes*2) // can do direct copy if sample sizes are equal { memcpy((char *) &m_superBlock.protectedBlock.m_buf[m_sampleIndex*m_sampleBytes*2], (const char *) &(*it), inRemainingSamples * sizeof(Sample)); } else if ((sizeof(Sample) == 8) && (m_sampleBytes == 2)) // modulators produce 16 bit samples { for (int is = 0; is < inRemainingSamples; is++) { int16_t *rp = (int16_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2]); int16_t *ip = (int16_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2+2]); *rp = (it+is)->m_real & 0xFFFF; *ip = (it+is)->m_imag & 0xFFFF; } } else if ((sizeof(Sample) == 4) && (m_sampleBytes == 4)) // use 16 bit samples for Tx { for (int is = 0; is < inRemainingSamples; is++) { int32_t *rp = (int32_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2]); int32_t *ip = (int32_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2+4]); *rp = (it+is)->m_real; *ip = (it+is)->m_imag; } } m_sampleIndex += inRemainingSamples; it = end; // all input samples are consumed } else // complete super block and initiate the next if not end of frame { if (sizeof(Sample) == m_sampleBytes*2) // can do direct copy if sample sizes are equal { memcpy((char *) &m_superBlock.protectedBlock.m_buf[m_sampleIndex*m_sampleBytes*2], (const char *) &(*it), (samplesPerBlock - m_sampleIndex) * sizeof(Sample)); } else if ((sizeof(Sample) == 8) && (m_sampleBytes == 2)) // modulators produce 16 bit samples { for (int is = 0; is < samplesPerBlock - m_sampleIndex; is++) { int16_t *rp = (int16_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2]); int16_t *ip = (int16_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2+2]); *rp = (it+is)->m_real & 0xFFFF; *ip = (it+is)->m_imag & 0xFFFF; } } else if ((sizeof(Sample) == 4) && (m_sampleBytes == 4)) // use 16 bit samples for Tx { for (int is = 0; is < samplesPerBlock - m_sampleIndex; is++) { int32_t *rp = (int32_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2]); int32_t *ip = (int32_t*) &(m_superBlock.protectedBlock.m_buf[(m_sampleIndex+is)*m_sampleBytes*2+4]); *rp = (it+is)->m_real; *ip = (it+is)->m_imag; } } it += samplesPerBlock - m_sampleIndex; m_sampleIndex = 0; m_superBlock.header.frameIndex = m_frameCount; m_superBlock.header.blockIndex = m_txBlockIndex; m_txBlocks[m_txBlocksIndex][m_txBlockIndex] = m_superBlock; if (m_txBlockIndex == m_nbOriginalBlocks - 1) // frame complete { int nbBlocksFEC = m_nbBlocksFEC; int txDelay = m_txDelay; //qDebug("UDPSinkFEC::write: push frame to worker: %u", m_frameCount); m_udpWorker->pushTxFrame(m_txBlocks[m_txBlocksIndex], nbBlocksFEC, txDelay, m_frameCount); //m_txThread = new std::thread(transmitUDP, this, m_txBlocks[m_txBlocksIndex], m_frameCount, nbBlocksFEC, txDelay, m_cm256Valid); //transmitUDP(this, m_txBlocks[m_txBlocksIndex], m_frameCount, m_nbBlocksFEC, m_txDelay, m_cm256Valid); m_txBlocksIndex = (m_txBlocksIndex + 1) % 4; m_txBlockIndex = 0; m_frameCount++; } else { m_txBlockIndex++; } } } } UDPSinkFECWorker::UDPSinkFECWorker() : m_running(false), m_remotePort(9090) { m_cm256Valid = m_cm256.isInitialized(); connect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages()), Qt::DirectConnection); } UDPSinkFECWorker::~UDPSinkFECWorker() { disconnect(&m_inputMessageQueue, SIGNAL(messageEnqueued()), this, SLOT(handleInputMessages())); m_inputMessageQueue.clear(); } void UDPSinkFECWorker::pushTxFrame(UDPSinkFEC::SuperBlock *txBlocks, uint32_t nbBlocksFEC, uint32_t txDelay, uint16_t frameIndex) { //qDebug("UDPSinkFECWorker::pushTxFrame. %d", m_inputMessageQueue.size()); m_inputMessageQueue.push(MsgUDPFECEncodeAndSend::create(txBlocks, nbBlocksFEC, txDelay, frameIndex)); } void UDPSinkFECWorker::setRemoteAddress(const QString& address, uint16_t port) { m_inputMessageQueue.push(MsgConfigureRemoteAddress::create(address, port)); } void UDPSinkFECWorker::process() { m_running = true; qDebug("UDPSinkFECWorker::process: started"); while (m_running) { usleep(250000); } qDebug("UDPSinkFECWorker::process: stopped"); emit finished(); } void UDPSinkFECWorker::stop() { m_running = false; } void UDPSinkFECWorker::handleInputMessages() { Message* message; while ((message = m_inputMessageQueue.pop()) != 0) { if (MsgUDPFECEncodeAndSend::match(*message)) { MsgUDPFECEncodeAndSend *sendMsg = (MsgUDPFECEncodeAndSend *) message; encodeAndTransmit(sendMsg->getTxBlocks(), sendMsg->getFrameIndex(), sendMsg->getNbBlocsFEC(), sendMsg->getTxDelay()); } else if (MsgConfigureRemoteAddress::match(*message)) { qDebug("UDPSinkFECWorker::handleInputMessages: %s", message->getIdentifier()); MsgConfigureRemoteAddress *addressMsg = (MsgConfigureRemoteAddress *) message; m_remoteAddress = addressMsg->getAddress(); m_remotePort = addressMsg->getPort(); } delete message; } } void UDPSinkFECWorker::encodeAndTransmit(UDPSinkFEC::SuperBlock *txBlockx, uint16_t frameIndex, uint32_t nbBlocksFEC, uint32_t txDelay) { CM256::cm256_encoder_params cm256Params; //!< Main interface with CM256 encoder CM256::cm256_block descriptorBlocks[256]; //!< Pointers to data for CM256 encoder UDPSinkFEC::ProtectedBlock fecBlocks[256]; //!< FEC data if ((nbBlocksFEC == 0) || !m_cm256Valid) { // qDebug("UDPSinkFECWorker::encodeAndTransmit: transmit frame without FEC to %s:%d", m_remoteAddress.toStdString().c_str(), m_remotePort); for (unsigned int i = 0; i < UDPSinkFEC::m_nbOriginalBlocks; i++) { m_socket.SendDataGram((const void *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress.toStdString(), (uint32_t) m_remotePort); //m_udpSocket->writeDatagram((const char *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress, m_remotePort); usleep(txDelay); } } else { cm256Params.BlockBytes = sizeof(UDPSinkFEC::ProtectedBlock); cm256Params.OriginalCount = UDPSinkFEC::m_nbOriginalBlocks; cm256Params.RecoveryCount = nbBlocksFEC; // Fill pointers to data for (int i = 0; i < cm256Params.OriginalCount + cm256Params.RecoveryCount; ++i) { if (i >= cm256Params.OriginalCount) { memset((char *) &txBlockx[i].protectedBlock, 0, sizeof(UDPSinkFEC::ProtectedBlock)); } txBlockx[i].header.frameIndex = frameIndex; txBlockx[i].header.blockIndex = i; descriptorBlocks[i].Block = (void *) &(txBlockx[i].protectedBlock); descriptorBlocks[i].Index = txBlockx[i].header.blockIndex; } // Encode FEC blocks if (m_cm256.cm256_encode(cm256Params, descriptorBlocks, fecBlocks)) { qDebug("UDPSinkFECWorker::encodeAndTransmit: CM256 encode failed. No transmission."); return; } // Merge FEC with data to transmit for (int i = 0; i < cm256Params.RecoveryCount; i++) { txBlockx[i + cm256Params.OriginalCount].protectedBlock = fecBlocks[i]; } // Transmit all blocks // qDebug("UDPSinkFECWorker::encodeAndTransmit: transmit frame with FEC to %s:%d", m_remoteAddress.toStdString().c_str(), m_remotePort); for (int i = 0; i < cm256Params.OriginalCount + cm256Params.RecoveryCount; i++) { #ifdef SDRDAEMON_PUNCTURE if (i == SDRDAEMON_PUNCTURE) { continue; } #endif // std::cerr << "UDPSinkFEC::transmitUDP:" // << " i: " << i // << " frameIndex: " << (int) m_txBlocks[i].header.frameIndex // << " blockIndex: " << (int) m_txBlocks[i].header.blockIndex // << " i.q:"; // // for (int j = 0; j < 10; j++) // { // std::cerr << " " << (int) m_txBlocks[i].protectedBlock.m_samples[j].m_real // << "." << (int) m_txBlocks[i].protectedBlock.m_samples[j].m_imag; // } // // std::cerr << std::endl; m_socket.SendDataGram((const void *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress.toStdString(), (uint32_t) m_remotePort); //m_udpSocket->writeDatagram((const char *) &txBlockx[i], (int) UDPSinkFEC::m_udpSize, m_remoteAddress, m_remotePort); usleep(txDelay); } } }