///////////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2018 F4EXB                                                      //
// written by Edouard Griffiths                                                  //
//                                                                               //
// Float half-band FIR based interpolator and decimator                        //
// This is the double buffer variant                                             //
//                                                                               //
// This program is free software; you can redistribute it and/or modify          //
// it under the terms of the GNU General Public License as published by          //
// the Free Software Foundation as version 3 of the License, or                  //
// (at your option) any later version.                                           //
//                                                                               //
// This program is distributed in the hope that it will be useful,               //
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
// GNU General Public License V3 for more details.                               //
//                                                                               //
// You should have received a copy of the GNU General Public License             //
// along with this program. If not, see .          //
///////////////////////////////////////////////////////////////////////////////////
#ifndef INCLUDE_INTHALFBANDFILTER_DBF_H
#define INCLUDE_INTHALFBANDFILTER_DBF_H
#include 
#include "dsp/dsptypes.h"
#include "dsp/hbfiltertraits.h"
#include "export.h"
template
class SDRBASE_API IntHalfbandFilterDBF {
public:
    IntHalfbandFilterDBF();
    void myDecimate(AccuType x1, AccuType y1, AccuType *x2, AccuType *y2)
    {
        storeSample(x1, y1);
        advancePointer();
        storeSample(*x2, *y2);
        doFIR(x2, y2);
        advancePointer();
    }
    /** Optimized upsampler by 2 not calculating FIR with inserted null samples */
    void myInterpolate(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2)
    {
        // insert sample into ring double buffer
        m_samplesDB[m_ptr][0] = *x1;
        m_samplesDB[m_ptr][1] = *y1;
        m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][0] = *x1;
        m_samplesDB[m_ptr + HBFIRFilterTraits::hbOrder/2][1] = *y1;
        // advance pointer
        if (m_ptr < (HBFIRFilterTraits::hbOrder/2) - 1) {
            m_ptr++;
        } else {
            m_ptr = 0;
        }
        // first output sample calculated with the middle peak
        *x1 = m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][0];
        *y1 = m_samplesDB[m_ptr + (HBFIRFilterTraits::hbOrder/4) - 1][1];
        // second sample calculated with the filter
        doInterpolateFIR(x2, y2);
    }
    void myInterpolateInf(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4)
    {
        myInterpolate(x1, y1, x2, y2);
        myInterpolate(x3, y3, x4, y4);
        // rotation
        qint32 x;
        x = *x1;
        *x1 = *y1;
        *y1 = -x;
        *x2 = -*x2;
        *y2 = -*y2;
        x = *x3;
        *x3 = -*y3;
        *y3 = x;
    }
    void myInterpolateSup(qint32 *x1, qint32 *y1, qint32 *x2, qint32 *y2, qint32 *x3, qint32 *y3, qint32 *x4, qint32 *y4)
    {
        myInterpolate(x1, y1, x2, y2);
        myInterpolate(x3, y3, x4, y4);
        // rotation
        qint32 x;
        x = *x1;
        *x1 = -*y1;
        *y1 = x;
        *x2 = -*x2;
        *y2 = -*y2;
        x = *x3;
        *x3 = *y3;
        *y3 = -x;
    }
protected:
    SampleType m_samplesDB[2*(HBFIRFilterTraits::hbOrder - 1)][2]; // double buffer technique
	int m_ptr;
	int m_size;
	int m_state;
    void storeSample(AccuType x, AccuType y)
    {
        m_samplesDB[m_ptr][0] = x;
        m_samplesDB[m_ptr][1] = y;
        m_samplesDB[m_ptr + m_size][0] = x;
        m_samplesDB[m_ptr + m_size][1] = y;
    }
    void advancePointer()
    {
        m_ptr = m_ptr + 1 < m_size ? m_ptr + 1: 0;
    }
    void doFIR(AccuType *x, AccuType *y)
    {
        int a = m_ptr + m_size; // tip pointer
        int b = m_ptr + 1; // tail pointer
        AccuType iAcc = 0;
        AccuType qAcc = 0;
        for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++)
        {
            iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffsF[i];
            qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffsF[i];
            a -= 2;
            b += 2;
        }
        iAcc += m_samplesDB[b-1][0] / 2.0;
        qAcc += m_samplesDB[b-1][1] / 2.0;
        *x = iAcc; // HB_SHIFT incorrect do not loose the gained bit
        *y = qAcc;
    }
    void doInterpolateFIR(qint32 *x, qint32 *y)
    {
        qint16 a = m_ptr;
        qint16 b = m_ptr + (HBFIRFilterTraits::hbOrder / 2) - 1;
        // go through samples in buffer
        AccuType iAcc = 0;
        AccuType qAcc = 0;
        for (int i = 0; i < HBFIRFilterTraits::hbOrder / 4; i++)
        {
            iAcc += (m_samplesDB[a][0] + m_samplesDB[b][0]) * HBFIRFilterTraits::hbCoeffsF[i];
            qAcc += (m_samplesDB[a][1] + m_samplesDB[b][1]) * HBFIRFilterTraits::hbCoeffsF[i];
            a++;
            b--;
        }
        *x = iAcc * SDR_RX_SCALED;
        *y = qAcc * SDR_RX_SCALED;
    }
};
template
IntHalfbandFilterDBF::IntHalfbandFilterDBF()
{
    m_size = HBFIRFilterTraits::hbOrder - 1;
    for (int i = 0; i < m_size; i++)
    {
        m_samplesDB[i][0] = 0;
        m_samplesDB[i][1] = 0;
    }
    m_ptr = 0;
    m_state = 0;
}
#endif // INCLUDE_INTHALFBANDFILTER_DBF_H