mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			195 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			195 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany     //
 | 
						|
// written by Christian Daniel                                                       //
 | 
						|
// Copyright (C) 2014 John Greb <hexameron@spam.no>                                  //
 | 
						|
// Copyright (C) 2016-2018 Edouard Griffiths, F4EXB <f4exb06@gmail.com>              //
 | 
						|
// Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com>                          //
 | 
						|
//                                                                                   //
 | 
						|
// This program is free software; you can redistribute it and/or modify              //
 | 
						|
// it under the terms of the GNU General Public License as published by              //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                      //
 | 
						|
// (at your option) any later version.                                               //
 | 
						|
//                                                                                   //
 | 
						|
// This program is distributed in the hope that it will be useful,                   //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                    //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                      //
 | 
						|
// GNU General Public License V3 for more details.                                   //
 | 
						|
//                                                                                   //
 | 
						|
// You should have received a copy of the GNU General Public License                 //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.              //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
#include <cmath>
 | 
						|
#include <vector>
 | 
						|
#include "dsp/interpolator.h"
 | 
						|
 | 
						|
 | 
						|
void Interpolator::createPolyphaseLowPass(
 | 
						|
        std::vector<Real>& taps,
 | 
						|
        int phaseSteps,
 | 
						|
        double gain,
 | 
						|
        double sampleRateHz,
 | 
						|
        double cutoffFreqHz,
 | 
						|
        double transitionWidthHz,
 | 
						|
        double oobAttenuationdB)
 | 
						|
{
 | 
						|
    double nbTapsPerPhase = (oobAttenuationdB * sampleRateHz) / (22.0 * transitionWidthHz * phaseSteps);
 | 
						|
    return createPolyphaseLowPass(taps, phaseSteps, gain, sampleRateHz, cutoffFreqHz, nbTapsPerPhase);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Interpolator::createPolyphaseLowPass(
 | 
						|
        std::vector<Real>& taps,
 | 
						|
        int phaseSteps,
 | 
						|
        double gain,
 | 
						|
        double sampleRateHz,
 | 
						|
        double cutoffFreqHz,
 | 
						|
        double nbTapsPerPhase)
 | 
						|
{
 | 
						|
	int ntaps = (int)(nbTapsPerPhase * phaseSteps);
 | 
						|
	qDebug("Interpolator::createPolyphaseLowPass: ntaps: %d", ntaps);
 | 
						|
 | 
						|
	if ((ntaps % 2) != 0) {
 | 
						|
	    ntaps++;
 | 
						|
	}
 | 
						|
 | 
						|
	ntaps *= phaseSteps;
 | 
						|
 | 
						|
	taps.resize(ntaps);
 | 
						|
	std::vector<float> window(ntaps);
 | 
						|
 | 
						|
	for (int n = 0; n < ntaps; n++) {
 | 
						|
	    window[n] = 0.54 - 0.46 * cos ((2 * M_PI * n) / (ntaps - 1));
 | 
						|
	}
 | 
						|
 | 
						|
	int M = (ntaps - 1) / 2;
 | 
						|
	double fwT0 = 2 * M_PI * cutoffFreqHz / sampleRateHz;
 | 
						|
 | 
						|
	for (int n = -M; n <= M; n++)
 | 
						|
	{
 | 
						|
		if (n == 0) {
 | 
						|
		    taps[n + M] = fwT0 / M_PI * window[n + M];
 | 
						|
		} else {
 | 
						|
		    taps[n + M] =  sin (n * fwT0) / (n * M_PI) * window[n + M];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	double max = taps[0 + M];
 | 
						|
 | 
						|
	for (int n = 1; n <= M; n++) {
 | 
						|
	    max += 2.0 * taps[n + M];
 | 
						|
	}
 | 
						|
 | 
						|
	gain /= max;
 | 
						|
 | 
						|
	for (int i = 0; i < ntaps; i++) {
 | 
						|
	    taps[i] *= gain;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
Interpolator::Interpolator() :
 | 
						|
	m_taps(0),
 | 
						|
	m_alignedTaps(0),
 | 
						|
	m_taps2(0),
 | 
						|
	m_alignedTaps2(0),
 | 
						|
    m_ptr(0),
 | 
						|
	m_phaseSteps(1),
 | 
						|
    m_nTaps(1)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
Interpolator::~Interpolator()
 | 
						|
{
 | 
						|
	free();
 | 
						|
}
 | 
						|
 | 
						|
void Interpolator::create(int phaseSteps, double sampleRate, double cutoff, double nbTapsPerPhase)
 | 
						|
{
 | 
						|
	free();
 | 
						|
 | 
						|
	std::vector<Real> taps;
 | 
						|
 | 
						|
	createPolyphaseLowPass(
 | 
						|
	    taps,
 | 
						|
		phaseSteps, // number of polyphases
 | 
						|
		1.0, // gain
 | 
						|
		phaseSteps * sampleRate, // sampling frequency
 | 
						|
		cutoff, // hz beginning of transition band
 | 
						|
		nbTapsPerPhase);
 | 
						|
 | 
						|
	// init state
 | 
						|
	m_ptr = 0;
 | 
						|
	m_nTaps = taps.size() / phaseSteps;
 | 
						|
	m_phaseSteps = phaseSteps;
 | 
						|
	m_samples.resize(m_nTaps + 2);
 | 
						|
 | 
						|
	for (int i = 0; i < m_nTaps + 2; i++) {
 | 
						|
	    m_samples[i] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	// reorder into polyphase
 | 
						|
	std::vector<Real> polyphase(taps.size());
 | 
						|
 | 
						|
	for (int phase = 0; phase < phaseSteps; phase++)
 | 
						|
	{
 | 
						|
		for (int i = 0; i < m_nTaps; i++) {
 | 
						|
		    polyphase[phase * m_nTaps + i] = taps[i * phaseSteps + phase];
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// normalize phase filters
 | 
						|
	for (int phase = 0; phase < phaseSteps; phase++)
 | 
						|
	{
 | 
						|
		Real sum = 0;
 | 
						|
 | 
						|
		for (int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++) {
 | 
						|
		    sum += polyphase[i];
 | 
						|
		}
 | 
						|
 | 
						|
		for (int i = phase * m_nTaps; i < phase * m_nTaps + m_nTaps; i++) {
 | 
						|
		    polyphase[i] /= sum;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// move taps around to match sse storage requirements
 | 
						|
	m_taps = new float[2 * taps.size() + 8];
 | 
						|
 | 
						|
	for (uint i = 0; i < 2 * taps.size() + 8; ++i) {
 | 
						|
	    m_taps[i] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	m_alignedTaps = (float*)((((quint64)m_taps) + 15) & ~15);
 | 
						|
 | 
						|
	for (uint i = 0; i < taps.size(); ++i)
 | 
						|
	{
 | 
						|
		m_alignedTaps[2 * i + 0] = polyphase[i];
 | 
						|
		m_alignedTaps[2 * i + 1] = polyphase[i];
 | 
						|
	}
 | 
						|
 | 
						|
	m_taps2 = new float[2 * taps.size() + 8];
 | 
						|
 | 
						|
	for (uint i = 0; i < 2 * taps.size() + 8; ++i) {
 | 
						|
	    m_taps2[i] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	m_alignedTaps2 = (float*)((((quint64)m_taps2) + 15) & ~15);
 | 
						|
 | 
						|
	for (uint i = 1; i < taps.size(); ++i)
 | 
						|
	{
 | 
						|
		m_alignedTaps2[2 * (i - 1) + 0] = polyphase[i];
 | 
						|
		m_alignedTaps2[2 * (i - 1) + 1] = polyphase[i];
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void Interpolator::free()
 | 
						|
{
 | 
						|
	if (m_taps != NULL)
 | 
						|
	{
 | 
						|
		delete[] m_taps;
 | 
						|
		m_taps = NULL;
 | 
						|
		m_alignedTaps = NULL;
 | 
						|
		delete[] m_taps2;
 | 
						|
		m_taps2 = NULL;
 | 
						|
		m_alignedTaps2 = NULL;
 | 
						|
	}
 | 
						|
}
 |