mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 04:50:29 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			319 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			319 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2011-2020 Cesium Contributors                                   //
 | |
| // Copyright (C) 2022 Jon Beniston, M7RCE                                        //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include "coordinates.h"
 | |
| #include "units.h"
 | |
| 
 | |
| // Scale cartesian position on to surface of ellipsoid
 | |
| QVector3D Coordinates::scaleToGeodeticSurface(QVector3D cartesian, QVector3D oneOverRadii, QVector3D oneOverRadiiSquared)
 | |
| {
 | |
|     float centerToleranceSquared = 0.1;
 | |
| 
 | |
|     double x2 = cartesian.x() * cartesian.x() * oneOverRadii.x() * oneOverRadii.x();
 | |
|     double y2 = cartesian.y() * cartesian.y() * oneOverRadii.y() * oneOverRadii.y();
 | |
|     double z2 = cartesian.z() * cartesian.z() * oneOverRadii.z() * oneOverRadii.z();
 | |
| 
 | |
|     double squaredNorm = x2 + y2 + z2;
 | |
|     double ratio = sqrt(1.0 / squaredNorm);
 | |
| 
 | |
|     QVector3D intersection = cartesian * ratio;
 | |
| 
 | |
|     if (squaredNorm < centerToleranceSquared) {
 | |
|         return intersection;
 | |
|     }
 | |
| 
 | |
|     QVector3D gradient(
 | |
|         intersection.x() * oneOverRadiiSquared.x() * 2.0,
 | |
|         intersection.y() * oneOverRadiiSquared.y() * 2.0,
 | |
|         intersection.z() * oneOverRadiiSquared.z() * 2.0
 | |
|         );
 | |
| 
 | |
|     double lambda = ((1.0 - ratio) * cartesian.length()) / (0.5 * gradient.length());
 | |
| 
 | |
|     double correction = 0.0;
 | |
|     double func;
 | |
|     double denominator;
 | |
|     double xMultiplier;
 | |
|     double yMultiplier;
 | |
|     double zMultiplier;
 | |
|     double xMultiplier2;
 | |
|     double yMultiplier2;
 | |
|     double zMultiplier2;
 | |
|     double xMultiplier3;
 | |
|     double yMultiplier3;
 | |
|     double zMultiplier3;
 | |
| 
 | |
|     do
 | |
|     {
 | |
|         lambda -= correction;
 | |
| 
 | |
|         xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.x());
 | |
|         yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.y());
 | |
|         zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.z());
 | |
| 
 | |
|         xMultiplier2 = xMultiplier * xMultiplier;
 | |
|         yMultiplier2 = yMultiplier * yMultiplier;
 | |
|         zMultiplier2 = zMultiplier * zMultiplier;
 | |
| 
 | |
|         xMultiplier3 = xMultiplier2 * xMultiplier;
 | |
|         yMultiplier3 = yMultiplier2 * yMultiplier;
 | |
|         zMultiplier3 = zMultiplier2 * zMultiplier;
 | |
| 
 | |
|         func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0;
 | |
| 
 | |
|         denominator =
 | |
|           x2 * xMultiplier3 * oneOverRadiiSquared.x() +
 | |
|           y2 * yMultiplier3 * oneOverRadiiSquared.y() +
 | |
|           z2 * zMultiplier3 * oneOverRadiiSquared.z();
 | |
| 
 | |
|         double derivative = -2.0 * denominator;
 | |
| 
 | |
|         correction = func / derivative;
 | |
|     }
 | |
|     while (abs(func) > 0.000000000001);
 | |
| 
 | |
|     QVector3D result(
 | |
|         cartesian.x() * xMultiplier,
 | |
|         cartesian.y() * yMultiplier,
 | |
|         cartesian.z() * zMultiplier
 | |
|         );
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // QVector3D.normalized doesn't work with small numbers
 | |
| QVector3D Coordinates::normalized(QVector3D vec)
 | |
| {
 | |
|     QVector3D result;
 | |
|     float magnitude = vec.length();
 | |
|     result.setX(vec.x() / magnitude);
 | |
|     result.setY(vec.y() / magnitude);
 | |
|     result.setZ(vec.z() / magnitude);
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Convert ECEF position to geodetic coordinates
 | |
| void Coordinates::ecefToGeodetic(double x, double y, double z, double &latitude, double &longitude, double &height)
 | |
| {
 | |
|     QVector3D wgs84OneOverRadix(1.0 / 6378137.0,
 | |
|                                 1.0 / 6378137.0,
 | |
|                                 1.0 / 6356752.3142451793);
 | |
|     QVector3D wgs84OneOverRadiiSquared(1.0 / (6378137.0 * 6378137.0),
 | |
|                                         1.0 / (6378137.0 * 6378137.0),
 | |
|                                         1.0 / (6356752.3142451793 * 6356752.3142451793));
 | |
| 
 | |
|     QVector3D cartesian(x, y, z);
 | |
| 
 | |
|     QVector3D p = scaleToGeodeticSurface(cartesian, wgs84OneOverRadix, wgs84OneOverRadiiSquared);
 | |
| 
 | |
|     QVector3D n = p * wgs84OneOverRadiiSquared;
 | |
|     n = normalized(n);
 | |
| 
 | |
|     QVector3D h = cartesian - p;
 | |
| 
 | |
|     longitude = atan2(n.y(), n.x());
 | |
|     latitude = asin(n.z());
 | |
| 
 | |
|     longitude = Units::radiansToDegrees(longitude);
 | |
|     latitude = Units::radiansToDegrees(latitude);
 | |
| 
 | |
|     double t = QVector3D::dotProduct(h, cartesian);
 | |
|     double sign = t >= 0.0 ? 1.0 : 0.0;
 | |
|     height = sign * h.length();
 | |
| }
 | |
| 
 | |
| // Convert ECEF velocity to speed and heading
 | |
| void Coordinates::ecefVelToSpeedHeading(double latitude, double longitude,
 | |
|                                         double velX, double velY, double velZ,
 | |
|                                         double &speed, double &verticalRate, double &heading)
 | |
| {
 | |
|     if ((velX == 0.0) && (velY == 0.0) && (velZ == 0.0))
 | |
|     {
 | |
|         speed = 0.0;
 | |
|         heading = 0.0;
 | |
|         verticalRate = 0.0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     double latRad = Units::degreesToRadians(latitude);
 | |
|     double lonRad = Units::degreesToRadians(longitude);
 | |
| 
 | |
|     double sinLat = sin(latRad);
 | |
|     double cosLat = cos(latRad);
 | |
|     double sinLon = sin(lonRad);
 | |
|     double cosLon = cos(lonRad);
 | |
| 
 | |
|     double velEast = -velX * sinLon + velY * cosLon;
 | |
|     double velNorth = -velX * sinLat * cosLon - velY * sinLat * sinLon + velZ * cosLat;
 | |
|     double velUp = velX * cosLat * cosLon + velY * cosLat * sinLon + velZ * sinLat;
 | |
| 
 | |
|     speed = sqrt(velNorth * velNorth + velEast * velEast);
 | |
|     verticalRate = velUp;
 | |
| 
 | |
|     double headingRad = atan2(velEast, velNorth);
 | |
|     heading = Units::radiansToDegrees(headingRad);
 | |
|     if (heading < 0.0) {
 | |
|         heading += 360.0;
 | |
|     } else if (heading >= 360.0) {
 | |
|         heading -= 360.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Convert a position specified in longitude, latitude in degrees and height in metres above WGS84 ellipsoid in to
 | |
| // Earth Centered Earth Fixed frame cartesian coordinates
 | |
| // See Cesium.Cartesian3.fromDegrees
 | |
| QVector3D Coordinates::geodeticToECEF(double longitude, double latitude, double height)
 | |
| {
 | |
|     return geodeticRadiansToECEF(Units::degreesToRadians(longitude), Units::degreesToRadians(latitude), height);
 | |
| }
 | |
| 
 | |
| // FIXME: QVector3D is only float!
 | |
| // See Cesium.Cartesian3.fromRadians
 | |
| QVector3D Coordinates::geodeticRadiansToECEF(double longitude, double latitude, double height)
 | |
| {
 | |
|     QVector3D wgs84RadiiSquared(6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793);
 | |
| 
 | |
|     double cosLatitude = cos(latitude);
 | |
|     QVector3D n;
 | |
|     n.setX(cosLatitude * cos(longitude));
 | |
|     n.setY(cosLatitude * sin(longitude));
 | |
|     n.setZ(sin(latitude));
 | |
|     n.normalize();
 | |
|     QVector3D k;
 | |
|     k = wgs84RadiiSquared * n;
 | |
|     double gamma = sqrt(QVector3D::dotProduct(n, k));
 | |
|     k = k / gamma;
 | |
|     n = n * height;
 | |
|     return k + n;
 | |
| }
 | |
| 
 | |
| // Convert heading, pitch and roll in degrees to a quaternoin
 | |
| // See: Cesium.Quaternion.fromHeadingPitchRoll
 | |
| QQuaternion Coordinates::fromHeadingPitchRoll(double heading, double pitch, double roll)
 | |
| {
 | |
|     QVector3D xAxis(1, 0, 0);
 | |
|     QVector3D yAxis(0, 1, 0);
 | |
|     QVector3D zAxis(0, 0, 1);
 | |
| 
 | |
|     QQuaternion rollQ = QQuaternion::fromAxisAndAngle(xAxis, roll);
 | |
| 
 | |
|     QQuaternion pitchQ = QQuaternion::fromAxisAndAngle(yAxis, -pitch);
 | |
| 
 | |
|     QQuaternion headingQ = QQuaternion::fromAxisAndAngle(zAxis, -heading);
 | |
| 
 | |
|     QQuaternion temp = rollQ * pitchQ;
 | |
| 
 | |
|     return headingQ * temp;
 | |
| }
 | |
| 
 | |
| // Calculate a transformation matrix from a East, North, Up frame at the given position to Earth Centered Earth Fixed frame
 | |
| // See: Cesium.Transforms.eastNorthUpToFixedFrame
 | |
| QMatrix4x4 Coordinates::eastNorthUpToECEF(QVector3D origin)
 | |
| {
 | |
|     // TODO: Handle special case at centre of earth and poles
 | |
|     QVector3D up = origin.normalized();
 | |
|     QVector3D east(-origin.y(), origin.x(), 0.0);
 | |
|     east.normalize();
 | |
|     QVector3D north = QVector3D::crossProduct(up, east);
 | |
|     QMatrix4x4 result(
 | |
|         east.x(), north.x(), up.x(), origin.x(),
 | |
|         east.y(), north.y(), up.y(), origin.y(),
 | |
|         east.z(), north.z(), up.z(), origin.z(),
 | |
|         0.0, 0.0, 0.0, 1.0
 | |
|     );
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| // Convert 3x3 rotation matrix to a quaternoin
 | |
| // Although there is a method for this in Qt: QQuaternion::fromRotationMatrix, it seems to
 | |
| // result in different signs, so the following is based on Cesium code
 | |
| QQuaternion Coordinates::fromRotation(QMatrix3x3 mat)
 | |
| {
 | |
|     QQuaternion q;
 | |
| 
 | |
|     double trace = mat(0, 0) + mat(1, 1) + mat(2, 2);
 | |
| 
 | |
|     if (trace > 0.0)
 | |
|     {
 | |
|         double root = sqrt(trace + 1.0);
 | |
|         q.setScalar(0.5 * root);
 | |
|         root = 0.5 / root;
 | |
| 
 | |
|         q.setX((mat(2,1) - mat(1,2)) * root);
 | |
|         q.setY((mat(0,2) - mat(2,0)) * root);
 | |
|         q.setZ((mat(1,0) - mat(0,1)) * root);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double next[] = {1, 2, 0};
 | |
|         int i = 0;
 | |
|         if (mat(1,1) > mat(0,0)) {
 | |
|             i = 1;
 | |
|         }
 | |
|         if (mat(2,2) > mat(0,0) && mat(2,2) > mat(1,1)) {
 | |
|             i = 2;
 | |
|         }
 | |
|         int j = next[i];
 | |
|         int k = next[j];
 | |
| 
 | |
|         double root = sqrt(mat(i,i) - mat(j,j) - mat(k,k) + 1);
 | |
|         double quat[] = {0.0, 0.0, 0.0};
 | |
|         quat[i] = 0.5 * root;
 | |
|         root = 0.5 / root;
 | |
| 
 | |
|         q.setScalar((mat(j,k) - mat(k,j)) * root);
 | |
|         quat[j] = (mat(i,j) + mat(j,i)) * root;
 | |
|         quat[k] = (mat(i,k) + mat(k,i)) * root;
 | |
|         q.setX(-quat[0]);
 | |
|         q.setY(-quat[1]);
 | |
|         q.setZ(-quat[2]);
 | |
|     }
 | |
|     return q;
 | |
| }
 | |
| 
 | |
| // Calculate orientation quaternion for a model (such as an aircraft) based on position and (HPR) heading, pitch and roll (in degrees)
 | |
| // While Cesium supports specifying orientation as HPR, CZML doesn't currently. See https://github.com/CesiumGS/cesium/issues/5184
 | |
| // CZML requires the orientation to be in the Earth Centered Earth Fixed (geocentric) reference frame (https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates)
 | |
| // The orientation therefore depends not only on HPR but also on position
 | |
| //
 | |
| // glTF uses a right-handed axis convention; that is, the cross product of right and forward yields up. glTF defines +Y as up, +Z as forward, and -X as right.
 | |
| // Cesium.Quaternion.fromHeadingPitchRoll  Heading is the rotation about the negative z axis. Pitch is the rotation about the negative y axis. Roll is the rotation about the positive x axis.
 | |
| QQuaternion Coordinates::orientation(double longitude, double latitude, double altitude, double heading, double pitch, double roll)
 | |
| {
 | |
|     // Forward direction for gltf models in Cesium seems to be Eastward, rather than Northward, so we adjust heading by -90 degrees
 | |
|     heading = -90 + heading;
 | |
| 
 | |
|     // Convert position to Earth Centered Earth Fixed (ECEF) frame
 | |
|     QVector3D positionECEF = geodeticToECEF(longitude, latitude, altitude);
 | |
| 
 | |
|     // Calculate matrix to transform from East, North, Up (ENU) frame to ECEF frame
 | |
|     QMatrix4x4 enuToECEFTransform = eastNorthUpToECEF(positionECEF);
 | |
| 
 | |
|     // Calculate rotation based on HPR in ENU frame
 | |
|     QQuaternion hprENU = fromHeadingPitchRoll(heading, pitch, roll);
 | |
| 
 | |
|     // Transform rotation from ENU to ECEF
 | |
|     QMatrix3x3 hprENU3 = hprENU.toRotationMatrix();
 | |
|     QMatrix4x4 hprENU4(hprENU3);
 | |
|     QMatrix4x4 transform = enuToECEFTransform * hprENU4;
 | |
| 
 | |
|     // Convert from 4x4 matrix to 3x3 matrix then to a quaternion
 | |
|     QQuaternion oq = fromRotation(transform.toGenericMatrix<3,3>());
 | |
| 
 | |
|     return oq;
 | |
| }
 |