mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			319 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			319 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2022 Jon Beniston, M7RCE <jon@beniston.com>                     //
 | 
						|
// Copyright (C) 2011-2020 Cesium Contributors                                   //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include "coordinates.h"
 | 
						|
#include "units.h"
 | 
						|
 | 
						|
// Scale cartesian position on to surface of ellipsoid
 | 
						|
QVector3D Coordinates::scaleToGeodeticSurface(QVector3D cartesian, QVector3D oneOverRadii, QVector3D oneOverRadiiSquared)
 | 
						|
{
 | 
						|
    float centerToleranceSquared = 0.1;
 | 
						|
 | 
						|
    double x2 = cartesian.x() * cartesian.x() * oneOverRadii.x() * oneOverRadii.x();
 | 
						|
    double y2 = cartesian.y() * cartesian.y() * oneOverRadii.y() * oneOverRadii.y();
 | 
						|
    double z2 = cartesian.z() * cartesian.z() * oneOverRadii.z() * oneOverRadii.z();
 | 
						|
 | 
						|
    double squaredNorm = x2 + y2 + z2;
 | 
						|
    double ratio = sqrt(1.0 / squaredNorm);
 | 
						|
 | 
						|
    QVector3D intersection = cartesian * ratio;
 | 
						|
 | 
						|
    if (squaredNorm < centerToleranceSquared) {
 | 
						|
        return intersection;
 | 
						|
    }
 | 
						|
 | 
						|
    QVector3D gradient(
 | 
						|
        intersection.x() * oneOverRadiiSquared.x() * 2.0,
 | 
						|
        intersection.y() * oneOverRadiiSquared.y() * 2.0,
 | 
						|
        intersection.z() * oneOverRadiiSquared.z() * 2.0
 | 
						|
        );
 | 
						|
 | 
						|
    double lambda = ((1.0 - ratio) * cartesian.length()) / (0.5 * gradient.length());
 | 
						|
 | 
						|
    double correction = 0.0;
 | 
						|
    double func;
 | 
						|
    double denominator;
 | 
						|
    double xMultiplier;
 | 
						|
    double yMultiplier;
 | 
						|
    double zMultiplier;
 | 
						|
    double xMultiplier2;
 | 
						|
    double yMultiplier2;
 | 
						|
    double zMultiplier2;
 | 
						|
    double xMultiplier3;
 | 
						|
    double yMultiplier3;
 | 
						|
    double zMultiplier3;
 | 
						|
 | 
						|
    do
 | 
						|
    {
 | 
						|
        lambda -= correction;
 | 
						|
 | 
						|
        xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.x());
 | 
						|
        yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.y());
 | 
						|
        zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquared.z());
 | 
						|
 | 
						|
        xMultiplier2 = xMultiplier * xMultiplier;
 | 
						|
        yMultiplier2 = yMultiplier * yMultiplier;
 | 
						|
        zMultiplier2 = zMultiplier * zMultiplier;
 | 
						|
 | 
						|
        xMultiplier3 = xMultiplier2 * xMultiplier;
 | 
						|
        yMultiplier3 = yMultiplier2 * yMultiplier;
 | 
						|
        zMultiplier3 = zMultiplier2 * zMultiplier;
 | 
						|
 | 
						|
        func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0;
 | 
						|
 | 
						|
        denominator =
 | 
						|
          x2 * xMultiplier3 * oneOverRadiiSquared.x() +
 | 
						|
          y2 * yMultiplier3 * oneOverRadiiSquared.y() +
 | 
						|
          z2 * zMultiplier3 * oneOverRadiiSquared.z();
 | 
						|
 | 
						|
        double derivative = -2.0 * denominator;
 | 
						|
 | 
						|
        correction = func / derivative;
 | 
						|
    }
 | 
						|
    while (abs(func) > 0.000000000001);
 | 
						|
 | 
						|
    QVector3D result(
 | 
						|
        cartesian.x() * xMultiplier,
 | 
						|
        cartesian.y() * yMultiplier,
 | 
						|
        cartesian.z() * zMultiplier
 | 
						|
        );
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// QVector3D.normalized doesn't work with small numbers
 | 
						|
QVector3D Coordinates::normalized(QVector3D vec)
 | 
						|
{
 | 
						|
    QVector3D result;
 | 
						|
    float magnitude = vec.length();
 | 
						|
    result.setX(vec.x() / magnitude);
 | 
						|
    result.setY(vec.y() / magnitude);
 | 
						|
    result.setZ(vec.z() / magnitude);
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// Convert ECEF position to geodetic coordinates
 | 
						|
void Coordinates::ecefToGeodetic(double x, double y, double z, double &latitude, double &longitude, double &height)
 | 
						|
{
 | 
						|
    QVector3D wgs84OneOverRadix(1.0 / 6378137.0,
 | 
						|
                                1.0 / 6378137.0,
 | 
						|
                                1.0 / 6356752.3142451793);
 | 
						|
    QVector3D wgs84OneOverRadiiSquared(1.0 / (6378137.0 * 6378137.0),
 | 
						|
                                        1.0 / (6378137.0 * 6378137.0),
 | 
						|
                                        1.0 / (6356752.3142451793 * 6356752.3142451793));
 | 
						|
 | 
						|
    QVector3D cartesian(x, y, z);
 | 
						|
 | 
						|
    QVector3D p = scaleToGeodeticSurface(cartesian, wgs84OneOverRadix, wgs84OneOverRadiiSquared);
 | 
						|
 | 
						|
    QVector3D n = p * wgs84OneOverRadiiSquared;
 | 
						|
    n = normalized(n);
 | 
						|
 | 
						|
    QVector3D h = cartesian - p;
 | 
						|
 | 
						|
    longitude = atan2(n.y(), n.x());
 | 
						|
    latitude = asin(n.z());
 | 
						|
 | 
						|
    longitude = Units::radiansToDegrees(longitude);
 | 
						|
    latitude = Units::radiansToDegrees(latitude);
 | 
						|
 | 
						|
    double t = QVector3D::dotProduct(h, cartesian);
 | 
						|
    double sign = t >= 0.0 ? 1.0 : 0.0;
 | 
						|
    height = sign * h.length();
 | 
						|
}
 | 
						|
 | 
						|
// Convert ECEF velocity to speed and heading
 | 
						|
void Coordinates::ecefVelToSpeedHeading(double latitude, double longitude,
 | 
						|
                                        double velX, double velY, double velZ,
 | 
						|
                                        double &speed, double &verticalRate, double &heading)
 | 
						|
{
 | 
						|
    if ((velX == 0.0) && (velY == 0.0) && (velZ == 0.0))
 | 
						|
    {
 | 
						|
        speed = 0.0;
 | 
						|
        heading = 0.0;
 | 
						|
        verticalRate = 0.0;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    double latRad = Units::degreesToRadians(latitude);
 | 
						|
    double lonRad = Units::degreesToRadians(longitude);
 | 
						|
 | 
						|
    double sinLat = sin(latRad);
 | 
						|
    double cosLat = cos(latRad);
 | 
						|
    double sinLon = sin(lonRad);
 | 
						|
    double cosLon = cos(lonRad);
 | 
						|
 | 
						|
    double velEast = -velX * sinLon + velY * cosLon;
 | 
						|
    double velNorth = -velX * sinLat * cosLon - velY * sinLat * sinLon + velZ * cosLat;
 | 
						|
    double velUp = velX * cosLat * cosLon + velY * cosLat * sinLon + velZ * sinLat;
 | 
						|
 | 
						|
    speed = sqrt(velNorth * velNorth + velEast * velEast);
 | 
						|
    verticalRate = velUp;
 | 
						|
 | 
						|
    double headingRad = atan2(velEast, velNorth);
 | 
						|
    heading = Units::radiansToDegrees(headingRad);
 | 
						|
    if (heading < 0.0) {
 | 
						|
        heading += 360.0;
 | 
						|
    } else if (heading >= 360.0) {
 | 
						|
        heading -= 360.0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// Convert a position specified in longitude, latitude in degrees and height in metres above WGS84 ellipsoid in to
 | 
						|
// Earth Centered Earth Fixed frame cartesian coordinates
 | 
						|
// See Cesium.Cartesian3.fromDegrees
 | 
						|
QVector3D Coordinates::geodeticToECEF(double longitude, double latitude, double height)
 | 
						|
{
 | 
						|
    return geodeticRadiansToECEF(Units::degreesToRadians(longitude), Units::degreesToRadians(latitude), height);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: QVector3D is only float!
 | 
						|
// See Cesium.Cartesian3.fromRadians
 | 
						|
QVector3D Coordinates::geodeticRadiansToECEF(double longitude, double latitude, double height)
 | 
						|
{
 | 
						|
    QVector3D wgs84RadiiSquared(6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793);
 | 
						|
 | 
						|
    double cosLatitude = cos(latitude);
 | 
						|
    QVector3D n;
 | 
						|
    n.setX(cosLatitude * cos(longitude));
 | 
						|
    n.setY(cosLatitude * sin(longitude));
 | 
						|
    n.setZ(sin(latitude));
 | 
						|
    n.normalize();
 | 
						|
    QVector3D k;
 | 
						|
    k = wgs84RadiiSquared * n;
 | 
						|
    double gamma = sqrt(QVector3D::dotProduct(n, k));
 | 
						|
    k = k / gamma;
 | 
						|
    n = n * height;
 | 
						|
    return k + n;
 | 
						|
}
 | 
						|
 | 
						|
// Convert heading, pitch and roll in degrees to a quaternoin
 | 
						|
// See: Cesium.Quaternion.fromHeadingPitchRoll
 | 
						|
QQuaternion Coordinates::fromHeadingPitchRoll(double heading, double pitch, double roll)
 | 
						|
{
 | 
						|
    QVector3D xAxis(1, 0, 0);
 | 
						|
    QVector3D yAxis(0, 1, 0);
 | 
						|
    QVector3D zAxis(0, 0, 1);
 | 
						|
 | 
						|
    QQuaternion rollQ = QQuaternion::fromAxisAndAngle(xAxis, roll);
 | 
						|
 | 
						|
    QQuaternion pitchQ = QQuaternion::fromAxisAndAngle(yAxis, -pitch);
 | 
						|
 | 
						|
    QQuaternion headingQ = QQuaternion::fromAxisAndAngle(zAxis, -heading);
 | 
						|
 | 
						|
    QQuaternion temp = rollQ * pitchQ;
 | 
						|
 | 
						|
    return headingQ * temp;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate a transformation matrix from a East, North, Up frame at the given position to Earth Centered Earth Fixed frame
 | 
						|
// See: Cesium.Transforms.eastNorthUpToFixedFrame
 | 
						|
QMatrix4x4 Coordinates::eastNorthUpToECEF(QVector3D origin)
 | 
						|
{
 | 
						|
    // TODO: Handle special case at centre of earth and poles
 | 
						|
    QVector3D up = origin.normalized();
 | 
						|
    QVector3D east(-origin.y(), origin.x(), 0.0);
 | 
						|
    east.normalize();
 | 
						|
    QVector3D north = QVector3D::crossProduct(up, east);
 | 
						|
    QMatrix4x4 result(
 | 
						|
        east.x(), north.x(), up.x(), origin.x(),
 | 
						|
        east.y(), north.y(), up.y(), origin.y(),
 | 
						|
        east.z(), north.z(), up.z(), origin.z(),
 | 
						|
        0.0, 0.0, 0.0, 1.0
 | 
						|
    );
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
// Convert 3x3 rotation matrix to a quaternoin
 | 
						|
// Although there is a method for this in Qt: QQuaternion::fromRotationMatrix, it seems to
 | 
						|
// result in different signs, so the following is based on Cesium code
 | 
						|
QQuaternion Coordinates::fromRotation(QMatrix3x3 mat)
 | 
						|
{
 | 
						|
    QQuaternion q;
 | 
						|
 | 
						|
    double trace = mat(0, 0) + mat(1, 1) + mat(2, 2);
 | 
						|
 | 
						|
    if (trace > 0.0)
 | 
						|
    {
 | 
						|
        double root = sqrt(trace + 1.0);
 | 
						|
        q.setScalar(0.5 * root);
 | 
						|
        root = 0.5 / root;
 | 
						|
 | 
						|
        q.setX((mat(2,1) - mat(1,2)) * root);
 | 
						|
        q.setY((mat(0,2) - mat(2,0)) * root);
 | 
						|
        q.setZ((mat(1,0) - mat(0,1)) * root);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        double next[] = {1, 2, 0};
 | 
						|
        int i = 0;
 | 
						|
        if (mat(1,1) > mat(0,0)) {
 | 
						|
            i = 1;
 | 
						|
        }
 | 
						|
        if (mat(2,2) > mat(0,0) && mat(2,2) > mat(1,1)) {
 | 
						|
            i = 2;
 | 
						|
        }
 | 
						|
        int j = next[i];
 | 
						|
        int k = next[j];
 | 
						|
 | 
						|
        double root = sqrt(mat(i,i) - mat(j,j) - mat(k,k) + 1);
 | 
						|
        double quat[] = {0.0, 0.0, 0.0};
 | 
						|
        quat[i] = 0.5 * root;
 | 
						|
        root = 0.5 / root;
 | 
						|
 | 
						|
        q.setScalar((mat(j,k) - mat(k,j)) * root);
 | 
						|
        quat[j] = (mat(i,j) + mat(j,i)) * root;
 | 
						|
        quat[k] = (mat(i,k) + mat(k,i)) * root;
 | 
						|
        q.setX(-quat[0]);
 | 
						|
        q.setY(-quat[1]);
 | 
						|
        q.setZ(-quat[2]);
 | 
						|
    }
 | 
						|
    return q;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate orientation quaternion for a model (such as an aircraft) based on position and (HPR) heading, pitch and roll (in degrees)
 | 
						|
// While Cesium supports specifying orientation as HPR, CZML doesn't currently. See https://github.com/CesiumGS/cesium/issues/5184
 | 
						|
// CZML requires the orientation to be in the Earth Centered Earth Fixed (geocentric) reference frame (https://en.wikipedia.org/wiki/Local_tangent_plane_coordinates)
 | 
						|
// The orientation therefore depends not only on HPR but also on position
 | 
						|
//
 | 
						|
// glTF uses a right-handed axis convention; that is, the cross product of right and forward yields up. glTF defines +Y as up, +Z as forward, and -X as right.
 | 
						|
// Cesium.Quaternion.fromHeadingPitchRoll  Heading is the rotation about the negative z axis. Pitch is the rotation about the negative y axis. Roll is the rotation about the positive x axis.
 | 
						|
QQuaternion Coordinates::orientation(double longitude, double latitude, double altitude, double heading, double pitch, double roll)
 | 
						|
{
 | 
						|
    // Forward direction for gltf models in Cesium seems to be Eastward, rather than Northward, so we adjust heading by -90 degrees
 | 
						|
    heading = -90 + heading;
 | 
						|
 | 
						|
    // Convert position to Earth Centered Earth Fixed (ECEF) frame
 | 
						|
    QVector3D positionECEF = geodeticToECEF(longitude, latitude, altitude);
 | 
						|
 | 
						|
    // Calculate matrix to transform from East, North, Up (ENU) frame to ECEF frame
 | 
						|
    QMatrix4x4 enuToECEFTransform = eastNorthUpToECEF(positionECEF);
 | 
						|
 | 
						|
    // Calculate rotation based on HPR in ENU frame
 | 
						|
    QQuaternion hprENU = fromHeadingPitchRoll(heading, pitch, roll);
 | 
						|
 | 
						|
    // Transform rotation from ENU to ECEF
 | 
						|
    QMatrix3x3 hprENU3 = hprENU.toRotationMatrix();
 | 
						|
    QMatrix4x4 hprENU4(hprENU3);
 | 
						|
    QMatrix4x4 transform = enuToECEFTransform * hprENU4;
 | 
						|
 | 
						|
    // Convert from 4x4 matrix to 3x3 matrix then to a quaternion
 | 
						|
    QQuaternion oq = fromRotation(transform.toGenericMatrix<3,3>());
 | 
						|
 | 
						|
    return oq;
 | 
						|
}
 |