mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-29 20:10:22 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			210 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * agc.cpp
 | |
|  *
 | |
|  *  Created on: Sep 7, 2015
 | |
|  *      Author: f4exb
 | |
|  */
 | |
| 
 | |
| #include <algorithm>
 | |
| #include "dsp/agc.h"
 | |
| 
 | |
| #include "util/stepfunctions.h"
 | |
| 
 | |
| AGC::AGC(int historySize, double R) :
 | |
| 	m_u0(1.0),
 | |
| 	m_R(R),
 | |
| 	m_moving_average(historySize, m_R),
 | |
| 	m_historySize(historySize),
 | |
| 	m_count(0)
 | |
| {}
 | |
| 
 | |
| AGC::~AGC()
 | |
| {}
 | |
| 
 | |
| void AGC::resize(int historySize, double R)
 | |
| {
 | |
| 	m_R = R;
 | |
| 	m_moving_average.resize(historySize, R);
 | |
| 	m_historySize = historySize;
 | |
| 	m_count = 0;
 | |
| }
 | |
| 
 | |
| Real AGC::getValue()
 | |
| {
 | |
| 	return m_u0;
 | |
| }
 | |
| 
 | |
| Real AGC::getAverage()
 | |
| {
 | |
| 	return m_moving_average.average();
 | |
| }
 | |
| 
 | |
| 
 | |
| MagAGC::MagAGC(int historySize, double R, double threshold) :
 | |
| 	AGC(historySize, R),
 | |
| 	m_squared(false),
 | |
| 	m_magsq(0.0),
 | |
| 	m_threshold(threshold),
 | |
| 	m_thresholdEnable(true),
 | |
| 	m_gate(0),
 | |
| 	m_stepLength(std::min(2400, historySize/2)), // max 50 ms (at 48 kHz)
 | |
|     m_stepDelta(1.0/m_stepLength),
 | |
| 	m_stepUpCounter(0),
 | |
|     m_stepDownCounter(0),
 | |
| 	m_gateCounter(0),
 | |
| 	m_stepDownDelay(historySize),
 | |
| 	m_clamping(false),
 | |
| 	m_R2(R*R),
 | |
| 	m_clampMax(1.0),
 | |
|     m_hardLimiting(false)
 | |
| {}
 | |
| 
 | |
| MagAGC::~MagAGC()
 | |
| {}
 | |
| 
 | |
| void MagAGC::resize(int historySize, int stepLength, Real R)
 | |
| {
 | |
|     m_R2 = R*R;
 | |
|     m_stepLength = stepLength;
 | |
|     m_stepDelta = 1.0 / m_stepLength;
 | |
|     m_stepUpCounter = 0;
 | |
|     m_stepDownCounter = 0;
 | |
|     AGC::resize(historySize, R);
 | |
|     m_moving_average.fill(0);
 | |
| }
 | |
| 
 | |
| void MagAGC::setOrder(double R)
 | |
| {
 | |
|     m_R2 = R*R;
 | |
|     AGC::setOrder(R);
 | |
|     m_moving_average.fill(0);
 | |
| }
 | |
| 
 | |
| void MagAGC::setThresholdEnable(bool enable)
 | |
| {
 | |
|     if (m_thresholdEnable != enable)
 | |
|     {
 | |
|         m_stepUpCounter = 0;
 | |
|         m_stepDownCounter = 0;
 | |
|     }
 | |
| 
 | |
|     m_thresholdEnable = enable;
 | |
| }
 | |
| 
 | |
| void MagAGC::feed(Complex& ci)
 | |
| {
 | |
| 	ci *= feedAndGetValue(ci);
 | |
| }
 | |
| 
 | |
| double MagAGC::hardLimiter(double multiplier, double magsq)
 | |
| {
 | |
|     if ((m_hardLimiting) && (multiplier*multiplier*magsq > 1.0)) {
 | |
|         return 1.0 / (multiplier*sqrt(magsq));
 | |
|     } else {
 | |
|         return multiplier;
 | |
|     }
 | |
| }
 | |
| 
 | |
| double MagAGC::feedAndGetValue(const Complex& ci)
 | |
| {
 | |
|     m_magsq = ci.real()*ci.real() + ci.imag()*ci.imag();
 | |
|     m_moving_average.feed(m_magsq);
 | |
| 
 | |
|     if (m_clamping)
 | |
|     {
 | |
|         if (m_squared)
 | |
|         {
 | |
|             if (m_magsq > m_clampMax) {
 | |
|                 m_u0 = m_clampMax / m_magsq;
 | |
|             } else {
 | |
|                 m_u0 = m_R / m_moving_average.average();
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (sqrt(m_magsq) > m_clampMax) {
 | |
|                 m_u0 = m_clampMax / sqrt(m_magsq);
 | |
|             } else {
 | |
|                 m_u0 = m_R / sqrt(m_moving_average.average());
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_u0 = m_R / (m_squared ? m_moving_average.average() : sqrt(m_moving_average.average()));
 | |
|     }
 | |
| 
 | |
|     if (m_thresholdEnable)
 | |
|     {
 | |
|         bool open = false;
 | |
| 
 | |
|         if (m_magsq > m_threshold)
 | |
|         {
 | |
|             if (m_gateCounter < m_gate) {
 | |
|                 m_gateCounter++;
 | |
|             } else {
 | |
|                 open = true;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             m_gateCounter = 0;
 | |
|         }
 | |
| 
 | |
|         if (open)
 | |
|         {
 | |
|             m_count = m_stepDownDelay; // delay before step down (grace delay)
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             m_count--;
 | |
|             m_gateCounter = m_gate; // keep gate open during grace
 | |
|         }
 | |
| 
 | |
|         if (m_count > 0) // up phase
 | |
|         {
 | |
|             m_stepDownCounter = m_stepUpCounter; // prepare for step down
 | |
| 
 | |
|             if (m_stepUpCounter < m_stepLength) // step up
 | |
|             {
 | |
|                 m_stepUpCounter++;
 | |
|                 return hardLimiter(m_u0 * StepFunctions::smootherstep(m_stepUpCounter * m_stepDelta), m_magsq);
 | |
|             }
 | |
|             else // steady open
 | |
|             {
 | |
|                 return hardLimiter(m_u0, m_magsq);
 | |
|             }
 | |
|         }
 | |
|         else // down phase
 | |
|         {
 | |
|             m_stepUpCounter = m_stepDownCounter; // prepare for step up
 | |
| 
 | |
|             if (m_stepDownCounter > 0) // step down
 | |
|             {
 | |
|                 m_stepDownCounter--;
 | |
|                 return hardLimiter(m_u0 * StepFunctions::smootherstep(m_stepDownCounter * m_stepDelta), m_magsq);
 | |
|             }
 | |
|             else // steady closed
 | |
|             {
 | |
|                 return 0.0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return hardLimiter(m_u0, m_magsq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| float MagAGC::getStepValue() const
 | |
| {
 | |
|     if (m_count > 0) // up phase
 | |
|     {
 | |
|         return StepFunctions::smootherstep(m_stepUpCounter * m_stepDelta); // step up
 | |
|     }
 | |
|     else // down phase
 | |
|     {
 | |
|         return StepFunctions::smootherstep(m_stepDownCounter * m_stepDelta); // step down
 | |
|     }
 | |
| }
 |