mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-29 20:10:22 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			691 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			691 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany     //
 | |
| // written by Christian Daniel                                                       //
 | |
| // Copyright (C) 2014-2015 John Greb <hexameron@spam.no>                             //
 | |
| // Copyright (C) 2015, 2017-2018, 2020, 2022-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com> //
 | |
| // Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com>                          //
 | |
| //                                                                                   //
 | |
| // This program is free software; you can redistribute it and/or modify              //
 | |
| // it under the terms of the GNU General Public License as published by              //
 | |
| // the Free Software Foundation as version 3 of the License, or                      //
 | |
| // (at your option) any later version.                                               //
 | |
| //                                                                                   //
 | |
| // This program is distributed in the hope that it will be useful,                   //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                    //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                      //
 | |
| // GNU General Public License V3 for more details.                                   //
 | |
| //                                                                                   //
 | |
| // You should have received a copy of the GNU General Public License                 //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.              //
 | |
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| // ----------------------------------------------------------------------------
 | |
| //	fftfilt.cxx  --  Fast convolution Overlap-Add filter
 | |
| //
 | |
| // Filter implemented using overlap-add FFT convolution method
 | |
| // h(t) characterized by Windowed-Sinc impulse response
 | |
| //
 | |
| // Reference:
 | |
| //	 "The Scientist and Engineer's Guide to Digital Signal Processing"
 | |
| //	 by Dr. Steven W. Smith, http://www.dspguide.com
 | |
| //	 Chapters 16, 18 and 21
 | |
| //
 | |
| // Copyright (C) 2006-2008 Dave Freese, W1HKJ
 | |
| //
 | |
| // This file is part of fldigi.
 | |
| //
 | |
| // Fldigi is free software: you can redistribute it and/or modify
 | |
| // it under the terms of the GNU General Public License as published by
 | |
| // the Free Software Foundation, either version 3 of the License, or
 | |
| // (at your option) any later version.
 | |
| //
 | |
| // Fldigi is distributed in the hope that it will be useful,
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| // GNU General Public License for more details.
 | |
| //
 | |
| // You should have received a copy of the GNU General Public License
 | |
| // along with fldigi.  If not, see <http://www.gnu.org/licenses/>.
 | |
| //
 | |
| // Augmented with more filter types
 | |
| // Copyright (C) 2015-2022 Edouard Griffiths, F4EXB
 | |
| // ----------------------------------------------------------------------------
 | |
| 
 | |
| #include <memory.h>
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| #include <cstdlib>
 | |
| #include <cmath>
 | |
| #include <typeinfo>
 | |
| #include <array>
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| 
 | |
| #include <dsp/misc.h>
 | |
| #include <dsp/fftfilt.h>
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // initialize the filter
 | |
| // create forward and reverse FFTs
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // Only need a single instance of g_fft, used for both forward and reverse
 | |
| void fftfilt::init_filter()
 | |
| {
 | |
| 	flen2	= flen >> 1;
 | |
| 	fft	= new g_fft<float>(flen);
 | |
| 
 | |
| 	filter		= new cmplx[flen];
 | |
|     filterOpp   = new cmplx[flen];
 | |
| 	data		= new cmplx[flen];
 | |
| 	output		= new cmplx[flen2];
 | |
| 	ovlbuf		= new cmplx[flen2];
 | |
| 
 | |
| 	std::fill(filter, filter + flen, cmplx{0, 0});
 | |
|     std::fill(filterOpp, filterOpp + flen, cmplx{0, 0});
 | |
| 	std::fill(data, data + flen , cmplx{0, 0});
 | |
| 	std::fill(output, output + flen2, cmplx{0, 0});
 | |
| 	std::fill(ovlbuf, ovlbuf + flen2, cmplx{0, 0});
 | |
| 
 | |
| 	inptr = 0;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // fft filter
 | |
| // f1 < f2 ==> band pass filter
 | |
| // f1 > f2 ==> band reject filter
 | |
| // f1 == 0 ==> low pass filter
 | |
| // f2 == 0 ==> high pass filter
 | |
| //------------------------------------------------------------------------------
 | |
| fftfilt::fftfilt(int len) :
 | |
|     m_noiseReduction(len)
 | |
| {
 | |
| 	flen	= len;
 | |
| 	pass    = 0;
 | |
| 	window  = 0;
 | |
|     m_dnr   = false;
 | |
| 	init_filter();
 | |
| }
 | |
| 
 | |
| fftfilt::fftfilt(float f1, float f2, int len) :
 | |
|     m_noiseReduction(len)
 | |
| {
 | |
| 	flen	= len;
 | |
| 	pass    = 0;
 | |
| 	window  = 0;
 | |
|     m_dnr   = false;
 | |
| 	init_filter();
 | |
| 	create_filter(f1, f2);
 | |
| }
 | |
| 
 | |
| fftfilt::fftfilt(float f2, int len) :
 | |
|     m_noiseReduction(len)
 | |
| {
 | |
| 	flen	= len;
 | |
|     pass    = 0;
 | |
|     window  = 0;
 | |
|     m_dnr   = false;
 | |
| 	init_filter();
 | |
| 	create_dsb_filter(f2);
 | |
| }
 | |
| 
 | |
| fftfilt::~fftfilt()
 | |
| {
 | |
| 	if (fft) delete fft;
 | |
| 
 | |
| 	if (filter) delete [] filter;
 | |
|     if (filterOpp) delete [] filterOpp;
 | |
| 	if (data) delete [] data;
 | |
| 	if (output) delete [] output;
 | |
| 	if (ovlbuf) delete [] ovlbuf;
 | |
| }
 | |
| 
 | |
| void fftfilt::create_filter(float f1, float f2, FFTWindow::Function wf)
 | |
| {
 | |
| 	// initialize the filter to zero
 | |
| 	std::fill(filter, filter + flen, cmplx{0, 0});
 | |
| 
 | |
| 	// create the filter shape coefficients by fft
 | |
| 	bool b_lowpass, b_highpass;
 | |
| 	b_lowpass = (f2 != 0);
 | |
| 	b_highpass = (f1 != 0);
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		filter[i] = 0;
 | |
| 	// lowpass @ f2
 | |
| 		if (b_lowpass)
 | |
| 			filter[i] += fsinc(f2, i, flen2);
 | |
| 	// highighpass @ f1
 | |
| 		if (b_highpass)
 | |
| 			filter[i] -= fsinc(f1, i, flen2);
 | |
| 	}
 | |
| 	// highpass is delta[flen2/2] - h(t)
 | |
| 	if (b_highpass && f2 < f1)
 | |
| 		filter[flen2 / 2] += 1;
 | |
| 
 | |
|     FFTWindow fwin;
 | |
|     fwin.create(wf, flen2);
 | |
|     fwin.apply(filter);
 | |
| 
 | |
| 	// for (int i = 0; i < flen2; i++)
 | |
| 	// 	filter[i] *= _blackman(i, flen2);
 | |
| 
 | |
| 	fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
 | |
| 
 | |
| 	// normalize the output filter for unity gain
 | |
| 	float scale = 0, mag;
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		mag = abs(filter[i]);
 | |
| 		if (mag > scale) scale = mag;
 | |
| 	}
 | |
| 	if (scale != 0) {
 | |
| 		for (int i = 0; i < flen; i++)
 | |
| 			filter[i] /= scale;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void fftfilt::create_filter(const std::vector<std::pair<float, float>>& limits, bool pass, FFTWindow::Function wf)
 | |
| {
 | |
|     std::vector<int> canvasNeg(flen2, pass ? 0 : 1); // initialize the negative frequencies filter canvas
 | |
|     std::vector<int> canvasPos(flen2, pass ? 0 : 1); // initialize the positive frequencies filter canvas
 | |
| 	std::fill(filter, filter + flen, cmplx{0, 0}); // initialize the positive filter to zero
 | |
|     std::fill(filterOpp, filterOpp + flen, cmplx{0, 0}); // initialize the negative filter to zero
 | |
| 
 | |
|     for (const auto& fs : limits)
 | |
|     {
 | |
|         const float& f1 = fs.first + 0.5;
 | |
|         const float& w = fs.second > 0.0 ? fs.second : 0.0;
 | |
|         const float& f2 = f1 + w;
 | |
| 
 | |
|         for (int i = 0; i < flen; i++)
 | |
|         {
 | |
|             if (pass) // pass
 | |
|             {
 | |
|                 if ((i >= f1*flen) && (i <= f2*flen))
 | |
|                 {
 | |
|                     if (i < flen2) {
 | |
|                         canvasNeg[flen2-1-i] = 1;
 | |
|                     } else {
 | |
|                         canvasPos[i-flen2] = 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else // reject
 | |
|             {
 | |
|                 if ((i >= f1*flen) && (i <= f2*flen))
 | |
|                 {
 | |
|                     if (i < flen2) {
 | |
|                         canvasNeg[flen2-1-i] = 0;
 | |
|                     } else {
 | |
|                         canvasPos[i-flen2] = 0;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     std::vector<std::pair<int,int>> indexesNegList;
 | |
|     std::vector<std::pair<int,int>> indexesPosList;
 | |
|     int cn = 0;
 | |
|     int cp = 0;
 | |
|     int defaultSecond = pass ? 0 : flen2 - 1;
 | |
| 
 | |
|     for (int i = 0; i < flen2; i++)
 | |
|     {
 | |
|         if ((canvasNeg[i] == 1) && (cn == 0)) {
 | |
|             indexesNegList.push_back(std::pair<int,int>{i, defaultSecond});
 | |
|         }
 | |
| 
 | |
|         if ((canvasNeg[i] == 0) && (cn == 1)) {
 | |
|             indexesNegList.back().second = i;
 | |
|         }
 | |
| 
 | |
|         if ((canvasPos[i] == 1) && (cp == 0)) {
 | |
|             indexesPosList.push_back(std::pair<int,int>{i, defaultSecond});
 | |
|         }
 | |
| 
 | |
|         if ((canvasPos[i] == 0) && (cp == 1)) {
 | |
|             indexesPosList.back().second = i;
 | |
|         }
 | |
| 
 | |
|         cn = canvasNeg[i];
 | |
|         cp = canvasPos[i];
 | |
|     }
 | |
| 
 | |
|     for (const auto& indexes : indexesPosList)
 | |
|     {
 | |
|         const float f1 = indexes.first / (float) flen;
 | |
|         const float f2 = indexes.second / (float) flen;
 | |
| 
 | |
|         for (int i = 0; i < flen2; i++)
 | |
|         {
 | |
|             if (f2 != 0) {
 | |
|                 filter[i] += fsinc(f2, i, flen2);
 | |
|             }
 | |
|             if (f1 != 0) {
 | |
|                 filter[i] -= fsinc(f1, i, flen2);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (f2 == 0 && f1 != 0) {
 | |
|             filter[flen2 / 2] += 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (const auto& indexes : indexesNegList)
 | |
|     {
 | |
|         const float f1 = indexes.first / (float) flen;
 | |
|         const float f2 = indexes.second / (float) flen;
 | |
| 
 | |
|         for (int i = 0; i < flen2; i++)
 | |
|         {
 | |
|             if (f2 != 0) {
 | |
|                 filterOpp[i] += fsinc(f2, i, flen2);
 | |
|             }
 | |
|             if (f1 != 0) {
 | |
|                 filterOpp[i] -= fsinc(f1, i, flen2);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (f2 == 0 && f1 != 0) {
 | |
|             filterOpp[flen2 / 2] += 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     FFTWindow fwin;
 | |
|     fwin.create(wf, flen2);
 | |
|     fwin.apply(filter);
 | |
|     fwin.apply(filterOpp);
 | |
| 
 | |
| 	fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
 | |
|     fft->ComplexFFT(filterOpp); // filter was expressed in the time domain (impulse response)
 | |
| 
 | |
|     float scalen = 0, scalep = 0, magn, magp; // normalize the output filter for unity gain
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++)
 | |
|     {
 | |
| 		magp = abs(filter[i]);
 | |
| 
 | |
|         if (magp > scalep) {
 | |
|             scalep = magp;
 | |
|         }
 | |
| 
 | |
|         magn = abs(filterOpp[i]);
 | |
| 
 | |
|         if (magn > scalen) {
 | |
|             scalen = magn;
 | |
|         }
 | |
| 	}
 | |
| 
 | |
|     if (scalep != 0)
 | |
|     {
 | |
|         std::for_each(
 | |
|             filter,
 | |
|             filter + flen,
 | |
|             [scalep](fftfilt::cmplx& s) { s /= scalep; }
 | |
|         );
 | |
| 	}
 | |
| 
 | |
|     if (scalen != 0)
 | |
|     {
 | |
|         std::for_each(
 | |
|             filterOpp,
 | |
|             filterOpp + flen,
 | |
|             [scalen](fftfilt::cmplx& s) { s /= scalen; }
 | |
|         );
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
 | |
| void fftfilt::create_dsb_filter(float f2, FFTWindow::Function wf)
 | |
| {
 | |
| 	// initialize the filter to zero
 | |
| 	std::fill(filter, filter + flen, cmplx{0, 0});
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		filter[i] = fsinc(f2, i, flen2);
 | |
| 		// filter[i] *= _blackman(i, flen2);
 | |
| 	}
 | |
| 
 | |
|     FFTWindow fwin;
 | |
|     fwin.create(wf, flen2);
 | |
|     fwin.apply(filter);
 | |
| 
 | |
| 	fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
 | |
| 
 | |
| 	// normalize the output filter for unity gain
 | |
| 	float scale = 0, mag;
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		mag = abs(filter[i]);
 | |
| 		if (mag > scale) scale = mag;
 | |
| 	}
 | |
| 	if (scale != 0) {
 | |
| 		for (int i = 0; i < flen; i++)
 | |
| 			filter[i] /= scale;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Double the size of FFT used for equivalent SSB filter or assume FFT is half the size of the one used for SSB
 | |
| // used with runAsym for in band / opposite band asymmetrical filtering. Can be used for vestigial sideband modulation.
 | |
| void fftfilt::create_asym_filter(float fopp, float fin, FFTWindow::Function wf)
 | |
| {
 | |
|     // in band
 | |
|     // initialize the filter to zero
 | |
|     std::fill(filter, filter + flen, cmplx{0, 0});
 | |
| 
 | |
|     for (int i = 0; i < flen2; i++) {
 | |
|         filter[i] = fsinc(fin, i, flen2);
 | |
|         // filter[i] *= _blackman(i, flen2);
 | |
|     }
 | |
| 
 | |
|     FFTWindow fwin;
 | |
|     fwin.create(wf, flen2);
 | |
|     fwin.apply(filter);
 | |
| 
 | |
|     fft->ComplexFFT(filter); // filter was expressed in the time domain (impulse response)
 | |
| 
 | |
|     // normalize the output filter for unity gain
 | |
|     float scale = 0, mag;
 | |
|     for (int i = 0; i < flen2; i++) {
 | |
|         mag = abs(filter[i]);
 | |
|         if (mag > scale) scale = mag;
 | |
|     }
 | |
|     if (scale != 0) {
 | |
|         for (int i = 0; i < flen; i++)
 | |
|             filter[i] /= scale;
 | |
|     }
 | |
| 
 | |
|     // opposite band
 | |
|     // initialize the filter to zero
 | |
|     std::fill(filterOpp, filterOpp + flen, cmplx{0, 0});
 | |
| 
 | |
|     for (int i = 0; i < flen2; i++) {
 | |
|         filterOpp[i] = fsinc(fopp, i, flen2);
 | |
|         // filterOpp[i] *= _blackman(i, flen2);
 | |
|     }
 | |
| 
 | |
|     fwin.apply(filterOpp);
 | |
|     fft->ComplexFFT(filterOpp); // filter was expressed in the time domain (impulse response)
 | |
| 
 | |
|     // normalize the output filter for unity gain
 | |
|     scale = 0;
 | |
|     for (int i = 0; i < flen2; i++) {
 | |
|         mag = abs(filterOpp[i]);
 | |
|         if (mag > scale) scale = mag;
 | |
|     }
 | |
|     if (scale != 0) {
 | |
|         for (int i = 0; i < flen; i++)
 | |
|             filterOpp[i] /= scale;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // This filter is constructed directly from frequency domain response. Run with runFilt.
 | |
| void fftfilt::create_rrc_filter(float fb, float a)
 | |
| {
 | |
|     std::fill(filter, filter+flen, 0);
 | |
| 
 | |
|     for (int i = 0; i < flen; i++) {
 | |
|         filter[i] = frrc(fb, a, i, flen);
 | |
|     }
 | |
| 
 | |
|     // normalize the output filter for unity gain
 | |
|     float scale = 0, mag;
 | |
|     for (int i = 0; i < flen; i++)
 | |
|     {
 | |
|         mag = abs(filter[i]);
 | |
|         if (mag > scale) {
 | |
|             scale = mag;
 | |
|         }
 | |
|     }
 | |
|     if (scale != 0)
 | |
|     {
 | |
|         for (int i = 0; i < flen; i++) {
 | |
|             filter[i] /= scale;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // test bypass
 | |
| int fftfilt::noFilt(const cmplx & in, cmplx **out)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	*out = data;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Filter with fast convolution (overlap-add algorithm).
 | |
| int fftfilt::runFilt(const cmplx & in, cmplx **out)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	fft->ComplexFFT(data);
 | |
| 	for (int i = 0; i < flen; i++)
 | |
| 		data[i] *= filter[i];
 | |
| 
 | |
| 	fft->InverseComplexFFT(data);
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		output[i] = ovlbuf[i] + data[i];
 | |
| 		ovlbuf[i] = data[flen2 + i];
 | |
| 	}
 | |
| 	std::fill(data, data + flen , cmplx{0, 0});
 | |
| 
 | |
| 	*out = output;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Second version for single sideband
 | |
| int fftfilt::runSSB(const cmplx & in, cmplx **out, bool usb, bool getDC)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	fft->ComplexFFT(data);
 | |
| 
 | |
| 	// get or reject DC component
 | |
| 	data[0] = getDC ? data[0]*filter[0] : 0;
 | |
|     m_noiseReduction.setScheme(m_dnrScheme);
 | |
|     m_noiseReduction.init();
 | |
| 
 | |
| 	// Discard frequencies for ssb
 | |
| 	if (usb)
 | |
| 	{
 | |
| 		for (int i = 1; i < flen2; i++)
 | |
|         {
 | |
| 			data[i] *= filter[i];
 | |
| 			data[flen2 + i] = 0;
 | |
| 
 | |
|             if (m_dnr)
 | |
|             {
 | |
|                 m_noiseReduction.push(data[i], i);
 | |
|                 m_noiseReduction.push(data[flen2 + i], flen2 + i);
 | |
|             }
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		for (int i = 1; i < flen2; i++)
 | |
|         {
 | |
| 			data[i] = 0;
 | |
| 			data[flen2 + i] *= filter[flen2 + i];
 | |
| 
 | |
|             if (m_dnr)
 | |
|             {
 | |
|                 m_noiseReduction.push(data[i], i);
 | |
|                 m_noiseReduction.push(data[flen2 + i], flen2 + i);
 | |
|             }
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|     if (m_dnr)
 | |
|     {
 | |
|         m_noiseReduction.m_aboveAvgFactor = m_dnrAboveAvgFactor;
 | |
|         m_noiseReduction.m_sigmaFactor = m_dnrSigmaFactor;
 | |
|         m_noiseReduction.m_nbPeaks = m_dnrNbPeaks;
 | |
|         m_noiseReduction.calc();
 | |
| 
 | |
|         for (int i = 0; i < flen; i++)
 | |
|         {
 | |
|             if (m_noiseReduction.cut(i)) {
 | |
|                 data[i] = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 	// in-place FFT: freqdata overwritten with filtered timedata
 | |
| 	fft->InverseComplexFFT(data);
 | |
| 
 | |
| 	// overlap and add
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		output[i] = ovlbuf[i] + data[i];
 | |
| 		ovlbuf[i] = data[i+flen2];
 | |
| 	}
 | |
| 	std::fill(data, data + flen , cmplx{0, 0});
 | |
| 
 | |
| 	*out = output;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Version for double sideband. You have to double the FFT size used for SSB.
 | |
| int fftfilt::runDSB(const cmplx & in, cmplx **out, bool getDC)
 | |
| {
 | |
| 	data[inptr++] = in;
 | |
| 	if (inptr < flen2)
 | |
| 		return 0;
 | |
| 	inptr = 0;
 | |
| 
 | |
| 	fft->ComplexFFT(data);
 | |
| 
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		data[i] *= filter[i];
 | |
| 		data[flen2 + i] *= filter[flen2 + i];
 | |
| 	}
 | |
| 
 | |
|     // get or reject DC component
 | |
|     data[0] = getDC ? data[0] : 0;
 | |
| 
 | |
| 	// in-place FFT: freqdata overwritten with filtered timedata
 | |
| 	fft->InverseComplexFFT(data);
 | |
| 
 | |
| 	// overlap and add
 | |
| 	for (int i = 0; i < flen2; i++) {
 | |
| 		output[i] = ovlbuf[i] + data[i];
 | |
| 		ovlbuf[i] = data[i+flen2];
 | |
| 	}
 | |
| 
 | |
| 	std::fill(data, data + flen , cmplx{0, 0});
 | |
| 
 | |
| 	*out = output;
 | |
| 	return flen2;
 | |
| }
 | |
| 
 | |
| // Version for asymmetrical sidebands. You have to double the FFT size used for SSB.
 | |
| int fftfilt::runAsym(const cmplx & in, cmplx **out, bool usb)
 | |
| {
 | |
|     data[inptr++] = in;
 | |
|     if (inptr < flen2)
 | |
|         return 0;
 | |
|     inptr = 0;
 | |
| 
 | |
|     fft->ComplexFFT(data);
 | |
| 
 | |
|     data[0] *= filter[0]; // always keep DC
 | |
| 
 | |
|     if (usb)
 | |
|     {
 | |
|         for (int i = 1; i < flen2; i++)
 | |
|         {
 | |
|             data[i] *= filter[i]; // usb
 | |
|             data[flen2 + i] *= filterOpp[flen2 + i]; // lsb is the opposite
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (int i = 1; i < flen2; i++)
 | |
|         {
 | |
|             data[i] *= filterOpp[i]; // usb is the opposite
 | |
|             data[flen2 + i] *= filter[flen2 + i]; // lsb
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // in-place FFT: freqdata overwritten with filtered timedata
 | |
|     fft->InverseComplexFFT(data);
 | |
| 
 | |
|     // overlap and add
 | |
|     for (int i = 0; i < flen2; i++) {
 | |
|         output[i] = ovlbuf[i] + data[i];
 | |
|         ovlbuf[i] = data[i+flen2];
 | |
|     }
 | |
| 
 | |
|     std::fill(data, data + flen , cmplx{0, 0});
 | |
| 
 | |
|     *out = output;
 | |
|     return flen2;
 | |
| }
 | |
| 
 | |
| /* Sliding FFT from Fldigi */
 | |
| 
 | |
| struct sfft::vrot_bins_pair {
 | |
| 	cmplx vrot;
 | |
| 	cmplx bins;
 | |
| } ;
 | |
| 
 | |
| sfft::sfft(int len)
 | |
| {
 | |
| 	vrot_bins = new vrot_bins_pair[len];
 | |
| 	delay  = new cmplx[len];
 | |
| 	fftlen = len;
 | |
| 	first = 0;
 | |
| 	last = len - 1;
 | |
| 	ptr = 0;
 | |
| 	double phi = 0.0, tau = 2.0 * M_PI/ len;
 | |
| 	k2 = 1.0;
 | |
| 	for (int i = 0; i < len; i++) {
 | |
| 		vrot_bins[i].vrot = cmplx( K1 * cos (phi), K1 * sin (phi) );
 | |
| 		phi += tau;
 | |
| 		delay[i] = vrot_bins[i].bins = 0.0;
 | |
| 		k2 *= K1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| sfft::~sfft()
 | |
| {
 | |
| 	delete [] vrot_bins;
 | |
| 	delete [] delay;
 | |
| }
 | |
| 
 | |
| // Sliding FFT, cmplx input, cmplx output
 | |
| // FFT is computed for each value from first to last
 | |
| // Values are not stable until more than "len" samples have been processed.
 | |
| void sfft::run(const cmplx& input)
 | |
| {
 | |
| 	cmplx & de = delay[ptr];
 | |
| 	const cmplx z( input.real() - k2 * de.real(), input.imag() - k2 * de.imag());
 | |
| 	de = input;
 | |
| 
 | |
| 	if (++ptr >= fftlen)
 | |
| 		ptr = 0;
 | |
| 
 | |
| 	for (vrot_bins_pair *itr = vrot_bins + first, *end = vrot_bins + last; itr != end ; ++itr)
 | |
| 		itr->bins = (itr->bins + z) * itr->vrot;
 | |
| }
 | |
| 
 | |
| // Copies the frequencies to a pointer.
 | |
| void sfft::fetch(float *result)
 | |
| {
 | |
| 	for (vrot_bins_pair *itr = vrot_bins, *end = vrot_bins + last;  itr != end; ++itr, ++result)
 | |
| 		*result = itr->bins.real() * itr->bins.real()
 | |
|                         + itr->bins.imag() * itr->bins.imag();
 | |
| }
 | |
| 
 |