mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			201 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#ifndef INCLUDE_INTERPOLATOR_H
 | 
						|
#define INCLUDE_INTERPOLATOR_H
 | 
						|
 | 
						|
#ifdef USE_SSE2
 | 
						|
#include <emmintrin.h>
 | 
						|
#endif
 | 
						|
#include "dsp/dsptypes.h"
 | 
						|
#include "util/export.h"
 | 
						|
#include <stdio.h>
 | 
						|
#ifndef __WINDOWS__
 | 
						|
#include <unistd.h>
 | 
						|
#endif
 | 
						|
 | 
						|
class SDRANGEL_API Interpolator {
 | 
						|
public:
 | 
						|
	Interpolator();
 | 
						|
	~Interpolator();
 | 
						|
 | 
						|
	void create(int phaseSteps, double sampleRate, double cutoff, double nbTapsPerPhase = 4.5);
 | 
						|
	void free();
 | 
						|
 | 
						|
	// Original code allowed for upsampling, but was never used that way
 | 
						|
	bool decimate(Real *distance, const Complex& next, Complex* result)
 | 
						|
	{
 | 
						|
		advanceFilter(next);
 | 
						|
		*distance -= 1.0;
 | 
						|
 | 
						|
		if (*distance >= 1.0)
 | 
						|
		{
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		doInterpolate((int) floor(*distance * (Real)m_phaseSteps), result);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	// interpolation simplified from the generalized resampler
 | 
						|
	bool interpolate(Real *distance, const Complex& next, Complex* result)
 | 
						|
	{
 | 
						|
	    bool consumed = false;
 | 
						|
 | 
						|
        if (*distance >= 1.0)
 | 
						|
        {
 | 
						|
            advanceFilter(next);
 | 
						|
            *distance -= 1.0;
 | 
						|
            consumed = true;
 | 
						|
        }
 | 
						|
 | 
						|
        doInterpolate((int)floor(*distance * (Real)m_phaseSteps), result);
 | 
						|
 | 
						|
        return consumed;
 | 
						|
	}
 | 
						|
 | 
						|
	// original interpolator which is actually an arbitrary rational resampler P/Q for any positive P, Q
 | 
						|
	// sampling frequency must be the highest of the two
 | 
						|
	bool resample(Real* distance, const Complex& next, bool* consumed, Complex* result)
 | 
						|
	{
 | 
						|
		while(*distance >= 1.0)
 | 
						|
		{
 | 
						|
			if(!(*consumed))
 | 
						|
			{
 | 
						|
				advanceFilter(next);
 | 
						|
				*distance -= 1.0;
 | 
						|
				*consumed = true;
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				return false;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		doInterpolate((int)floor(*distance * (Real)m_phaseSteps), result);
 | 
						|
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
private:
 | 
						|
	float* m_taps;
 | 
						|
	float* m_alignedTaps;
 | 
						|
	float* m_taps2;
 | 
						|
	float* m_alignedTaps2;
 | 
						|
	std::vector<Complex> m_samples;
 | 
						|
	int m_ptr;
 | 
						|
	int m_phaseSteps;
 | 
						|
	int m_nTaps;
 | 
						|
 | 
						|
	static void createPolyphaseLowPass(
 | 
						|
	    std::vector<Real>& taps,
 | 
						|
	    int phaseSteps,
 | 
						|
	    double gain,
 | 
						|
	    double sampleRateHz,
 | 
						|
	    double cutoffFreqHz,
 | 
						|
	    double transitionWidthHz,
 | 
						|
	    double oobAttenuationdB);
 | 
						|
 | 
						|
    static void createPolyphaseLowPass(
 | 
						|
        std::vector<Real>& taps,
 | 
						|
        int phaseSteps,
 | 
						|
        double gain,
 | 
						|
        double sampleRateHz,
 | 
						|
        double cutoffFreqHz,
 | 
						|
        double nbTapsPerPhase);
 | 
						|
 | 
						|
	void createTaps(int nTaps, double sampleRate, double cutoff, std::vector<Real>* taps);
 | 
						|
 | 
						|
	void advanceFilter(const Complex& next)
 | 
						|
	{
 | 
						|
		m_ptr--;
 | 
						|
		if(m_ptr < 0)
 | 
						|
			m_ptr = m_nTaps - 1;
 | 
						|
		m_samples[m_ptr] = next;
 | 
						|
	}
 | 
						|
 | 
						|
    void advanceFilter()
 | 
						|
    {
 | 
						|
        m_ptr--;
 | 
						|
        if(m_ptr < 0)
 | 
						|
            m_ptr = m_nTaps - 1;
 | 
						|
        m_samples[m_ptr].real(0.0);
 | 
						|
        m_samples[m_ptr].imag(0.0);
 | 
						|
    }
 | 
						|
 | 
						|
	void doInterpolate(int phase, Complex* result)
 | 
						|
	{
 | 
						|
		if (phase < 0)
 | 
						|
			phase = 0;
 | 
						|
#if USE_SSE2
 | 
						|
		// beware of the ringbuffer
 | 
						|
		if(m_ptr == 0) {
 | 
						|
			// only one straight block
 | 
						|
			const float* src = (const float*)&m_samples[0];
 | 
						|
			const __m128* filter = (const __m128*)&m_alignedTaps[phase * m_nTaps * 2];
 | 
						|
			__m128 sum = _mm_setzero_ps();
 | 
						|
			int todo = m_nTaps / 2;
 | 
						|
 | 
						|
			for(int i = 0; i < todo; i++) {
 | 
						|
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(src), *filter));
 | 
						|
				src += 4;
 | 
						|
				filter += 1;
 | 
						|
			}
 | 
						|
 | 
						|
			// add upper half to lower half and store
 | 
						|
			_mm_storel_pi((__m64*)result, _mm_add_ps(sum, _mm_shuffle_ps(sum, _mm_setzero_ps(), _MM_SHUFFLE(1, 0, 3, 2))));
 | 
						|
		} else {
 | 
						|
			// two blocks
 | 
						|
			const float* src = (const float*)&m_samples[m_ptr];
 | 
						|
			const __m128* filter = (const __m128*)&m_alignedTaps[phase * m_nTaps * 2];
 | 
						|
			__m128 sum = _mm_setzero_ps();
 | 
						|
 | 
						|
			// first block
 | 
						|
			int block = m_nTaps - m_ptr;
 | 
						|
			int todo = block / 2;
 | 
						|
			if(block & 1)
 | 
						|
				todo++;
 | 
						|
			for(int i = 0; i < todo; i++) {
 | 
						|
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(src), *filter));
 | 
						|
				src += 4;
 | 
						|
				filter += 1;
 | 
						|
			}
 | 
						|
			if(block & 1) {
 | 
						|
				// one sample beyond the end -> switch coefficient table
 | 
						|
				filter = (const __m128*)&m_alignedTaps2[phase * m_nTaps * 2 + todo * 4 - 4];
 | 
						|
			}
 | 
						|
			// second block
 | 
						|
			src = (const float*)&m_samples[0];
 | 
						|
			block = m_ptr;
 | 
						|
			todo = block / 2;
 | 
						|
			for(int i = 0; i < todo; i++) {
 | 
						|
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadu_ps(src), *filter));
 | 
						|
				src += 4;
 | 
						|
				filter += 1;
 | 
						|
			}
 | 
						|
			if(block & 1) {
 | 
						|
				// one sample remaining
 | 
						|
				sum = _mm_add_ps(sum, _mm_mul_ps(_mm_loadl_pi(_mm_setzero_ps(), (const __m64*)src), filter[0]));
 | 
						|
			}
 | 
						|
 | 
						|
			// add upper half to lower half and store
 | 
						|
			_mm_storel_pi((__m64*)result, _mm_add_ps(sum, _mm_shuffle_ps(sum, _mm_setzero_ps(), _MM_SHUFFLE(1, 0, 3, 2))));
 | 
						|
		}
 | 
						|
#else
 | 
						|
		int sample = m_ptr;
 | 
						|
		const Real* coeff = &m_alignedTaps[phase * m_nTaps * 2];
 | 
						|
		Real rAcc = 0;
 | 
						|
		Real iAcc = 0;
 | 
						|
 | 
						|
		for(int i = 0; i < m_nTaps; i++) {
 | 
						|
			rAcc += *coeff * m_samples[sample].real();
 | 
						|
			iAcc += *coeff * m_samples[sample].imag();
 | 
						|
			sample = (sample + 1) % m_nTaps;
 | 
						|
			coeff += 2;
 | 
						|
		}
 | 
						|
		*result = Complex(rAcc, iAcc);
 | 
						|
#endif
 | 
						|
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
#endif // INCLUDE_INTERPOLATOR_H
 |