mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-30 20:40:20 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			234 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			234 lines
		
	
	
		
			7.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2025 Jon Beniston, M7RCE <jon@beniston.com>                     //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include "whittakereilers.h"
 | |
| 
 | |
| WhittakerEilers::WhittakerEilers() :
 | |
|     v1a(nullptr),
 | |
|     v2a(nullptr),
 | |
|     da(nullptr),
 | |
|     dtd(nullptr),
 | |
|     ca(nullptr),
 | |
|     za(nullptr),
 | |
|     zb(nullptr),
 | |
|     b(nullptr),
 | |
|     m_length(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| WhittakerEilers::~WhittakerEilers()
 | |
| {
 | |
|     dealloc();
 | |
| }
 | |
| 
 | |
| void WhittakerEilers::alloc(int length)
 | |
| {
 | |
|     v1a = new double[length];
 | |
|     v2a = new double[length];
 | |
|     da = new double[length * 3];
 | |
|     dtd = new double[length * 3];
 | |
|     ca = new double[length * 3];
 | |
|     za = new double[length];
 | |
|     zb = new double[length];
 | |
|     b = new double[length];
 | |
|     m_length = length;
 | |
| }
 | |
| 
 | |
| void WhittakerEilers::dealloc()
 | |
| {
 | |
|     delete v1a;
 | |
|     delete v2a;
 | |
|     delete da;
 | |
|     delete dtd;
 | |
|     delete ca;
 | |
|     delete za;
 | |
|     delete zb;
 | |
|     delete b;
 | |
|     m_length = 0;
 | |
| }
 | |
| 
 | |
| void WhittakerEilers::filter(const double *xi, double *yi, const double *w, const int length, const double lambda)
 | |
| {
 | |
|     int i;
 | |
|     int j;
 | |
|     int k;
 | |
|     const int m = length;
 | |
| 
 | |
|     if (m_length < length)
 | |
|     {
 | |
|         dealloc();
 | |
|         alloc(length);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < m - 1; i++) {
 | |
|         v1a[i] = 1.0 / (xi[i + 1] - xi[i]);
 | |
|     }
 | |
|     v1a[m - 1] = 0.0;
 | |
|     for (i = 0; i < m - 2; i++) {
 | |
|         v2a[i] = 1.0 / (xi[i + 2] - xi[i]);
 | |
|     }
 | |
|     v2a[m - 1] = 0.0;
 | |
|     v2a[m - 2] = 0.0;
 | |
| 
 | |
|     //Wa = w;
 | |
|     // D1 = V1 * diff(I)
 | |
|     for (i = 0; i < m - 1; i++) {
 | |
|         da[i*3] = -v1a[i];
 | |
|         da[i*3+1] = v1a[i];
 | |
|     }
 | |
| 
 | |
|     // D2 = V2 * diff(D1)
 | |
|     for (i = 0; i < m - 2; i++) {
 | |
|         da[i*3] = v2a[i] * -da[i*3];
 | |
|         da[i*3+1] = v2a[i] * (da[(i+1)*3] - da[i*3+1]);
 | |
|         da[i*3+2] = v2a[i] * da[(i+1)*3+1];
 | |
|     }
 | |
|     for (i = 1; i <= 6; i++) {
 | |
|         da[m * 3 - i] = 0;
 | |
|     }
 | |
| 
 | |
|     dtd[0 * 3] = lambda * da[0 * 3] * da[0 * 3];
 | |
|     dtd[0 * 3 + 1] = lambda * da[0 * 3] * da[0 * 3 + 1];
 | |
|     dtd[0 * 3 + 2] = lambda * da[0 * 3] * da[0 * 3 + 2];
 | |
| 
 | |
|     dtd[1 * 3] = lambda * (da[0 * 3 + 1] * da[0 * 3 + 1] + da[1 * 3] * da[1 * 3]);
 | |
|     dtd[1 * 3 + 1] = lambda * (da[0 * 3 + 1] * da[0 * 3 + 2] + da[1 * 3] * da[1 * 3 + 1]);
 | |
|     dtd[1 * 3 + 2] = lambda * (da[1 * 3] * da[1 * 3 + 2]);
 | |
| 
 | |
|     for (int row = 2; row < m; row++) {
 | |
|         dtd[row * 3] = lambda * (da[(row - 2) * 3 + 2] * da[(row - 2) * 3 + 2] + da[(row - 1) * 3 + 1] * da[(row - 1) * 3 + 1] + da[row * 3] * da[row * 3]);
 | |
|         dtd[row * 3 + 1] = lambda * (da[(row - 1) * 3 + 1] * da[(row - 1) * 3 + 2] + da[(row) * 3] * da[(row) * 3 + 1]);
 | |
|         dtd[row * 3 + 2] = lambda * (da[(row) * 3] * da[(row) * 3 + 2]);
 | |
|     }
 | |
| 
 | |
|     // Add in W
 | |
|     for (i = 0; i < m; i++) {
 | |
|         dtd[i * 3] = w[i] + dtd[i * 3];
 | |
|     }
 | |
| 
 | |
|     // Cholesky Decomposition
 | |
| 
 | |
|     i = 1;
 | |
|     j = i - 1;
 | |
|     ca[j * 3] = sqrt(dtd[j * 3]);
 | |
| 
 | |
|     i = 2;
 | |
|     j = i - 2;
 | |
|     ca[j * 3 + 1] = 1.0 / ca[j * 3] * dtd[j * 3 + 1];
 | |
| 
 | |
|     i = 2;
 | |
|     j = i - 1;
 | |
|     k = i - 2;
 | |
|     double sum = ca[k * 3 + 1] * ca[k * 3 + 1];
 | |
|     ca[j * 3] = sqrt(dtd[j * 3] - sum);
 | |
| 
 | |
|     for (i = 3; i <= m; i++) {
 | |
|         j = i - 3;
 | |
|         ca[j * 3 + 2] = 1.0 / ca[j * 3] * dtd[j * 3 + 2];
 | |
| 
 | |
|         k = i - 3;
 | |
|         sum = ca[k * 3 + 2] * ca[k * 3 + 1];
 | |
|         j = i - 2;
 | |
|         ca[j * 3 + 1] = 1.0 / ca[j * 3] * (dtd[j * 3 + 1] - sum);
 | |
| 
 | |
|         k = i - 3;
 | |
|         sum = ca[k * 3 + 2] * ca[k * 3 + 2];
 | |
|         k = i - 2;
 | |
|         sum = sum + ca[k * 3 + 1] * ca[k * 3 + 1];
 | |
|         j = i - 1;
 | |
|         ca[j * 3] = sqrt(dtd[j * 3] - sum);
 | |
|     }
 | |
|     ca[m * 3 - 1] = 0;
 | |
|     ca[m * 3 - 2] = 0;
 | |
|     ca[m * 3 - 4] = 0;
 | |
| 
 | |
|     // % Forward substitution(C' \ (w .* y))
 | |
|     for (i = 0; i < m; i++) {
 | |
|         b[i] = w[i] * yi[i];
 | |
|     }
 | |
| 
 | |
|     za[0] = b[0] / ca[0];
 | |
| 
 | |
|     sum = ca[0 * 3 + 1] * za[0];
 | |
|     za[1] = (b[1] - sum) / ca[1 * 3];
 | |
| 
 | |
|     for (i = 3; i <= m; i++) {
 | |
|         sum = ca[(i - 3) * 3 + 2] * za[i - 3] + ca[(i - 2) * 3 + 1] * za[i - 2];
 | |
|         za[i - 1] = (b[i - 1] - sum) / ca[(i - 1) * 3];
 | |
|     }
 | |
| 
 | |
|     // Backward substituion  C \ (C' \ (w .* y));
 | |
|     b = za;
 | |
| 
 | |
|     i = m - 1;
 | |
|     zb[i] = b[i] / ca[i * 3];
 | |
| 
 | |
|     i = m - 2;
 | |
|     sum = ca[i * 3 + 1] * zb[i + 1];
 | |
|     zb[i] = (b[i] - sum) / ca[i * 3];
 | |
| 
 | |
|     for (i = m - 2; i >= 1; i--) {
 | |
|         sum = ca[(i - 1) * 3 + 2] * zb[i + 1] + ca[(i - 1) * 3 + 1] * zb[i];
 | |
|         zb[i-1] = (b[i - 1] - sum) / ca[(i - 1) * 3];
 | |
|     }
 | |
| 
 | |
|     if (std::isnan(zb[0])) {
 | |
|         qDebug() << "lambda" << lambda;
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "xi[" << i << "]" << qSetRealNumberPrecision(12) << xi[i];
 | |
|         }
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "yi[" << i << "]" << qSetRealNumberPrecision(12) << yi[i];
 | |
|         }
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "w[" << i << "]" << qSetRealNumberPrecision(12) << w[i];
 | |
|         }
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "v1a[" << i << "]" << qSetRealNumberPrecision(12) << v1a[i];
 | |
|         }
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "v2a[" << i << "]" << qSetRealNumberPrecision(12) << v2a[i];
 | |
|         }
 | |
|         for (int i = 0; i < m * 3; i++) {
 | |
|             qDebug() << "da[" << i << "]" << qSetRealNumberPrecision(12) << da[i];
 | |
|         }
 | |
|         for (int i = 0; i < m * 3; i++) {
 | |
|             qDebug() << "dtd[" << i << "]" << qSetRealNumberPrecision(12) << dtd[i];
 | |
|         }
 | |
|         for (int i = 0; i < m * 3; i++) {
 | |
|             qDebug() << "ca[" << i << "]" << qSetRealNumberPrecision(12) << ca[i];
 | |
|         }
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "za[" << i << "]" << qSetRealNumberPrecision(12) << za[i];
 | |
|         }
 | |
|         for (int i = 0; i < m; i++) {
 | |
|             qDebug() << "zb[" << i << "]" << qSetRealNumberPrecision(12) << zb[i];
 | |
|         }
 | |
|         // Don't put NaNs in output
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Copy result back to input
 | |
|     for (i = 0; i < m; i++) {
 | |
|         yi[i] = zb[i];
 | |
|     }
 | |
| 
 | |
|     /*for (i = 0; i < m; i++) {
 | |
|         qDebug() << "zb[" << i << "]=" << zb[i];
 | |
|     }*/
 | |
| }
 |