mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 13:00:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			200 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			200 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2018-2019 Edouard Griffiths, F4EXB <f4exb06@gmail.com>          //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include "audiocompressor.h"
 | |
| 
 | |
| const uint16_t AudioCompressor::ALAW_MAX = 0xFFF;
 | |
| const uint16_t AudioCompressor::MULAW_MAX = 0x1FFF;
 | |
| const uint16_t AudioCompressor::MULAW_BIAS = 33;
 | |
| 
 | |
| 
 | |
| AudioCompressor::AudioCompressor()
 | |
| {
 | |
|     fillLUT2();
 | |
| }
 | |
| 
 | |
| AudioCompressor::~AudioCompressor()
 | |
| {}
 | |
| 
 | |
| void AudioCompressor::fillLUT()
 | |
| {
 | |
|     for (int i=0; i<8192; i++) {
 | |
|         m_lut[i] = (24576/8192)*i;
 | |
|     }
 | |
| 
 | |
|     for (int i=8192; i<2*8192; i++) {
 | |
|         m_lut[i] = 24576 + 0.5f*(i-8192);
 | |
|     }
 | |
| 
 | |
|     for (int i=2*8192; i<3*8192; i++) {
 | |
|         m_lut[i] = 24576 + 4096 + 0.25f*(i-2*8192);
 | |
|     }
 | |
| 
 | |
|     for (int i=3*8192; i<4*8192; i++) {
 | |
|         m_lut[i] = 24576 + 4096 + 2048 + 0.125f*(i-3*8192);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void AudioCompressor::fillLUT2()
 | |
| {
 | |
|     for (int i=0; i<4096; i++) {
 | |
|         m_lut[i] = (24576/4096)*i;
 | |
|     }
 | |
| 
 | |
|     for (int i=4096; i<2*4096; i++) {
 | |
|         m_lut[i] = 24576 + 0.5f*(i-4096);
 | |
|     }
 | |
| 
 | |
|     for (int i=2*4096; i<3*4096; i++) {
 | |
|         m_lut[i] = 24576 + 2048 + 0.25f*(i-2*4096);
 | |
|     }
 | |
| 
 | |
|     for (int i=3*4096; i<4*4096; i++) {
 | |
|         m_lut[i] = 24576 + 2048 + 1024 + 0.125f*(i-3*4096);
 | |
|     }
 | |
| 
 | |
|     for (int i=4*4096; i<5*4096; i++) {
 | |
|         m_lut[i] = 24576 + 2048 + 1024 + 512 + 0.0625f*(i-4*4096);
 | |
|     }
 | |
| 
 | |
|     for (int i=5*4096; i<6*4096; i++) {
 | |
|         m_lut[i] = 24576 + 2048 + 1024 + 512 + 256 + 0.03125f*(i-5*4096);
 | |
|     }
 | |
| 
 | |
|     for (int i=6*4096; i<7*4096; i++) {
 | |
|         m_lut[i] = 24576 + 2048 + 1024 + 512 + 256 + 128 + 0.015625f*(i-6*4096);
 | |
|     }
 | |
| 
 | |
|     for (int i=7*4096; i<8*4096; i++) {
 | |
|         m_lut[i] = 24576 + 2048 + 1024 + 512 + 256 + 128 + 64 + 0.0078125f*(i-7*4096);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void AudioCompressor::fillALaw()
 | |
| {
 | |
|     for (int i=-16384; i<16384; i++) {
 | |
|         m_lut[i+16384] = ALaw_Encode(2*i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void AudioCompressor::fillULaw()
 | |
| {
 | |
|     for (int i=-16384; i<16384; i++) {
 | |
|         m_lut[i+16384] = MuLaw_Encode(2*i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int16_t AudioCompressor::compress(int16_t sample)
 | |
| {
 | |
|     int16_t sign = sample < 0 ? -1 : 1;
 | |
|     int16_t abs = sample < 0 ? -sample : sample;
 | |
|     return sign * m_lut[abs];
 | |
| }
 | |
| 
 | |
| int8_t AudioCompressor::compress8(int16_t sample)
 | |
| {
 | |
|     return m_lut[sample/2 + 16384];
 | |
| }
 | |
| 
 | |
| /* http://dystopiancode.blogspot.com/2012/02/pcm-law-and-u-law-companding-algorithms.html
 | |
|  *
 | |
|  * First, the number is verified is its negative. If the number is negative he will be made
 | |
|  * positive and the sign  variable (by default 0) will contain the value 0x80
 | |
|  * (so when it's OR-ed to the coded result it will determine it's sign).
 | |
|  *
 | |
|  * Since the A-Law algorithm considers numbers in the range 0x000 - 0xFFF
 | |
|  * (without considering the sign bit), if a number is bigger than 0xFFF, it will automatically
 | |
|  * made equal to 0xFFF in order to avoid further problems.
 | |
|  *
 | |
|  * The first step in determining the coded value is finding the position of the first bit
 | |
|  * who has a 1 value (excluding the sign bit). The search is started from position 11
 | |
|  * and is continued until a bit with the value 1 is find or until a position smaller than 5 is met.
 | |
|  *
 | |
|  * If the position is smaller than 5 (there was no 1 bit found on the positions 11-5),
 | |
|  * the least significant byte of the coded number is made equal the the bits 5,4,3,2
 | |
|  * of the original number. Otherwise the least significant bit of the coded number is equal
 | |
|  * to the first four bits who come after the first 1 bit encountered.
 | |
|  *
 | |
|  * In the end, the most significant byte of the coded number is computed according to the position
 | |
|  * of the first 1 bit (if not such this was found, then the position is considered).
 | |
|  *
 | |
|  * Also, before returning the result, the even bits of the result will be complemented
 | |
|  * (by XOR-ing with 0x55).
 | |
|  */
 | |
| int8_t AudioCompressor::ALaw_Encode(int16_t number)
 | |
| {
 | |
|     uint16_t mask = 0x800;
 | |
|     uint8_t sign = 0;
 | |
|     uint8_t position = 11;
 | |
|     uint8_t lsb = 0;
 | |
| 
 | |
|     if (number < 0)
 | |
|     {
 | |
|        number = -number;
 | |
|        sign = 0x80;
 | |
|     }
 | |
| 
 | |
|     if (number > ALAW_MAX) {
 | |
|        number = ALAW_MAX;
 | |
|     }
 | |
| 
 | |
|     for (; ((number & mask) != mask && position >= 5); mask >>= 1, position--) {
 | |
|     }
 | |
| 
 | |
|     lsb = (number >> ((position == 4) ? (1) : (position - 4))) & 0x0f;
 | |
| 
 | |
|     return (sign | ((position - 4) << 4) | lsb) ^ 0x55;
 | |
| }
 | |
| 
 | |
| /* http://dystopiancode.blogspot.com/2012/02/pcm-law-and-u-law-companding-algorithms.html
 | |
|  *
 | |
|  * The µ-Law compression algorithm is very similar to the A-Law compression algorithm.
 | |
|  * The main difference is that the µ-Law uses 13 bits instead of 12 bits, so the position
 | |
|  * variable will be initialized with 12 instead of 11. In order to make sure that there will be
 | |
|  * no number without a 1 bit in the first 12-5 positions, a bias value is added to the number
 | |
|  * (in this case 33). So, since there is no special case (numbers who do not have a 1 bit in
 | |
|  * the first 12-5 positions), this makes the algorithm less complex by eliminating some condtions.
 | |
|  *
 | |
|  * Also in the end all bits are complemented, not just the even ones.
 | |
|  */
 | |
| int8_t AudioCompressor::MuLaw_Encode(int16_t number)
 | |
| {
 | |
|    uint16_t mask = 0x1000;
 | |
|    uint8_t sign = 0;
 | |
|    uint8_t position = 12;
 | |
|    uint8_t lsb = 0;
 | |
| 
 | |
|    if (number < 0)
 | |
|    {
 | |
|       number = -number;
 | |
|       sign = 0x80;
 | |
|    }
 | |
| 
 | |
|    number += MULAW_BIAS;
 | |
| 
 | |
|    if (number > MULAW_MAX) {
 | |
|       number = MULAW_MAX;
 | |
|    }
 | |
| 
 | |
|    for (; ((number & mask) != mask && position >= 5); mask >>= 1, position--) {
 | |
|    }
 | |
| 
 | |
|    lsb = (number >> (position - 4)) & 0x0f;
 | |
| 
 | |
|    return (~(sign | ((position - 5) << 4) | lsb));
 | |
| }
 |