mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com>               //
 | 
						|
//                                                                               //
 | 
						|
// This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon          //
 | 
						|
// reformatted and adapted to Qt and SDRangel context                            //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#include "ft8stats.h"
 | 
						|
 | 
						|
namespace FT8 {
 | 
						|
 | 
						|
Stats::Stats(int how, float log_tail, float log_rate) :
 | 
						|
    sum_(0),
 | 
						|
    finalized_(false),
 | 
						|
    how_(how),
 | 
						|
    log_tail_(log_tail),
 | 
						|
    log_rate_(log_rate)
 | 
						|
{}
 | 
						|
 | 
						|
void Stats::add(float x)
 | 
						|
{
 | 
						|
    a_.push_back(x);
 | 
						|
    sum_ += x;
 | 
						|
    finalized_ = false;
 | 
						|
}
 | 
						|
 | 
						|
void Stats::finalize()
 | 
						|
{
 | 
						|
    finalized_ = true;
 | 
						|
 | 
						|
    int n = a_.size();
 | 
						|
    mean_ = sum_ / n;
 | 
						|
    float var = 0;
 | 
						|
    float bsum = 0;
 | 
						|
 | 
						|
    for (int i = 0; i < n; i++)
 | 
						|
    {
 | 
						|
        float y = a_[i] - mean_;
 | 
						|
        var += y * y;
 | 
						|
        bsum += fabs(y);
 | 
						|
    }
 | 
						|
 | 
						|
    var /= n;
 | 
						|
    stddev_ = sqrt(var);
 | 
						|
    b_ = bsum / n;
 | 
						|
 | 
						|
    // prepare for binary search to find where values lie
 | 
						|
    // in the distribution.
 | 
						|
    if (how_ != 0 && how_ != 5) {
 | 
						|
        std::sort(a_.begin(), a_.end());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
float Stats::mean()
 | 
						|
{
 | 
						|
    if (!finalized_) {
 | 
						|
        finalize();
 | 
						|
    }
 | 
						|
 | 
						|
    return mean_;
 | 
						|
}
 | 
						|
 | 
						|
float Stats::stddev()
 | 
						|
{
 | 
						|
    if (!finalized_) {
 | 
						|
        finalize();
 | 
						|
    }
 | 
						|
 | 
						|
    return stddev_;
 | 
						|
}
 | 
						|
 | 
						|
// fraction of distribution that's less than x.
 | 
						|
// assumes normal distribution.
 | 
						|
// this is PHI(x), or the CDF at x,
 | 
						|
// or the integral from -infinity
 | 
						|
// to x of the PDF.
 | 
						|
float Stats::gaussian_problt(float x)
 | 
						|
{
 | 
						|
    float SDs = (x - mean()) / stddev();
 | 
						|
    float frac = 0.5 * (1.0 + erf(SDs / sqrt(2.0)));
 | 
						|
    return frac;
 | 
						|
}
 | 
						|
 | 
						|
// https://en.wikipedia.org/wiki/Laplace_distribution
 | 
						|
// m and b from page 116 of Mark Owen's Practical Signal Processing.
 | 
						|
float Stats::laplace_problt(float x)
 | 
						|
{
 | 
						|
    float m = mean();
 | 
						|
    float cdf;
 | 
						|
 | 
						|
    if (x < m) {
 | 
						|
        cdf = 0.5 * exp((x - m) / b_);
 | 
						|
    } else {
 | 
						|
        cdf = 1.0 - 0.5 * exp(-(x - m) / b_);
 | 
						|
    }
 | 
						|
 | 
						|
    return cdf;
 | 
						|
}
 | 
						|
 | 
						|
// look into the actual distribution.
 | 
						|
float Stats::problt(float x)
 | 
						|
{
 | 
						|
    if (!finalized_) {
 | 
						|
        finalize();
 | 
						|
    }
 | 
						|
 | 
						|
    if (how_ == 0) {
 | 
						|
        return gaussian_problt(x);
 | 
						|
    }
 | 
						|
 | 
						|
    if (how_ == 5) {
 | 
						|
        return laplace_problt(x);
 | 
						|
    }
 | 
						|
 | 
						|
    // binary search.
 | 
						|
    auto it = std::lower_bound(a_.begin(), a_.end(), x);
 | 
						|
    int i = it - a_.begin();
 | 
						|
    int n = a_.size();
 | 
						|
 | 
						|
    if (how_ == 1)
 | 
						|
    {
 | 
						|
        // index into the distribution.
 | 
						|
        // works poorly for values that are off the ends
 | 
						|
        // of the distribution, since those are all
 | 
						|
        // mapped to 0.0 or 1.0, regardless of magnitude.
 | 
						|
        return i / (float)n;
 | 
						|
    }
 | 
						|
 | 
						|
    if (how_ == 2)
 | 
						|
    {
 | 
						|
        // use a kind of logistic regression for
 | 
						|
        // values near the edges of the distribution.
 | 
						|
        if (i < log_tail_ * n)
 | 
						|
        {
 | 
						|
            float x0 = a_[(int)(log_tail_ * n)];
 | 
						|
            float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
 | 
						|
            // y is 0..0.5
 | 
						|
            y /= 5;
 | 
						|
            return y;
 | 
						|
        }
 | 
						|
        else if (i > (1 - log_tail_) * n)
 | 
						|
        {
 | 
						|
            float x0 = a_[(int)((1 - log_tail_) * n)];
 | 
						|
            float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
 | 
						|
            // y is 0.5..1
 | 
						|
            // we want (1-log_tail)..1
 | 
						|
            y -= 0.5;
 | 
						|
            y *= 2;
 | 
						|
            y *= log_tail_;
 | 
						|
            y += (1 - log_tail_);
 | 
						|
            return y;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            return i / (float)n;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (how_ == 3)
 | 
						|
    {
 | 
						|
        // gaussian for values near the edge of the distribution.
 | 
						|
        if (i < log_tail_ * n) {
 | 
						|
            return gaussian_problt(x);
 | 
						|
        } else if (i > (1 - log_tail_) * n) {
 | 
						|
            return gaussian_problt(x);
 | 
						|
        } else {
 | 
						|
            return i / (float)n;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (how_ == 4)
 | 
						|
    {
 | 
						|
        // gaussian for values outside the distribution.
 | 
						|
        if (x < a_[0] || x > a_.back()) {
 | 
						|
            return gaussian_problt(x);
 | 
						|
        } else {
 | 
						|
            return i / (float)n;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace FT8
 |