mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 13:11:20 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			456 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			456 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2017-2019 Edouard Griffiths, F4EXB                              //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include <QDebug>
 | 
						|
 | 
						|
#include "dsp/dspcommands.h"
 | 
						|
#include "dsp/basebandsamplesink.h"
 | 
						|
#include "util/db.h"
 | 
						|
 | 
						|
#include "udpsourcesource.h"
 | 
						|
#include "udpsourcemsg.h"
 | 
						|
 | 
						|
UDPSourceSource::UDPSourceSource() :
 | 
						|
    m_channelSampleRate(48000),
 | 
						|
    m_channelFrequencyOffset(0),
 | 
						|
    m_squelch(1e-6),
 | 
						|
    m_spectrumSink(nullptr),
 | 
						|
    m_spectrumChunkSize(2160),
 | 
						|
    m_spectrumChunkCounter(0),
 | 
						|
    m_magsq(1e-10),
 | 
						|
    m_movingAverage(16, 1e-10),
 | 
						|
    m_inMovingAverage(480, 1e-10),
 | 
						|
    m_sampleRateSum(0),
 | 
						|
    m_sampleRateAvgCounter(0),
 | 
						|
    m_levelCalcCount(0),
 | 
						|
    m_peakLevel(0.0f),
 | 
						|
    m_levelSum(0.0f),
 | 
						|
    m_levelNbSamples(480),
 | 
						|
    m_squelchOpen(false),
 | 
						|
    m_squelchOpenCount(0),
 | 
						|
    m_squelchCloseCount(0),
 | 
						|
    m_squelchThreshold(4800),
 | 
						|
    m_modPhasor(0.0f),
 | 
						|
    m_SSBFilterBufferIndex(0)
 | 
						|
{
 | 
						|
    m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / m_settings.m_inputSampleRate, m_ssbFftLen);
 | 
						|
    m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
 | 
						|
    m_magsq = 0.0;
 | 
						|
 | 
						|
    m_udpHandler.start();
 | 
						|
 | 
						|
    applySettings(m_settings, true);
 | 
						|
    applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
 | 
						|
}
 | 
						|
 | 
						|
UDPSourceSource::~UDPSourceSource()
 | 
						|
{
 | 
						|
    m_udpHandler.stop();
 | 
						|
    delete m_SSBFilter;
 | 
						|
    delete[] m_SSBFilterBuffer;
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::setUDPFeedbackMessageQueue(MessageQueue *messageQueue)
 | 
						|
{
 | 
						|
    m_udpHandler.setFeedbackMessageQueue(messageQueue);
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
 | 
						|
{
 | 
						|
    std::for_each(
 | 
						|
        begin,
 | 
						|
        begin + nbSamples,
 | 
						|
        [this](Sample& s) {
 | 
						|
            pullOne(s);
 | 
						|
        }
 | 
						|
    );
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::pullOne(Sample& sample)
 | 
						|
{
 | 
						|
    if (m_settings.m_channelMute)
 | 
						|
    {
 | 
						|
        sample.m_real = 0.0f;
 | 
						|
        sample.m_imag = 0.0f;
 | 
						|
        initSquelch(false);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    Complex ci;
 | 
						|
 | 
						|
    if (m_interpolatorDistance > 1.0f) // decimate
 | 
						|
    {
 | 
						|
        modulateSample();
 | 
						|
 | 
						|
        while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
 | 
						|
        {
 | 
						|
            modulateSample();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
 | 
						|
        {
 | 
						|
            modulateSample();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    m_interpolatorDistanceRemain += m_interpolatorDistance;
 | 
						|
 | 
						|
    ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
 | 
						|
    double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
 | 
						|
    magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
 | 
						|
    m_movingAverage.feed(magsq);
 | 
						|
    m_magsq = m_movingAverage.average();
 | 
						|
 | 
						|
    sample.m_real = (FixReal) ci.real();
 | 
						|
    sample.m_imag = (FixReal) ci.imag();
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::modulateSample()
 | 
						|
{
 | 
						|
    if (m_settings.m_sampleFormat == UDPSourceSettings::FormatSnLE) // Linear I/Q transponding
 | 
						|
    {
 | 
						|
        Sample s;
 | 
						|
 | 
						|
        m_udpHandler.readSample(s);
 | 
						|
 | 
						|
        uint64_t magsq = s.m_real * s.m_real + s.m_imag * s.m_imag;
 | 
						|
        m_inMovingAverage.feed(magsq/(SDR_TX_SCALED*SDR_TX_SCALED));
 | 
						|
        m_inMagsq = m_inMovingAverage.average();
 | 
						|
 | 
						|
        calculateSquelch(m_inMagsq);
 | 
						|
 | 
						|
        if (m_squelchOpen)
 | 
						|
        {
 | 
						|
            m_modSample.real(s.m_real * m_settings.m_gainOut);
 | 
						|
            m_modSample.imag(s.m_imag * m_settings.m_gainOut);
 | 
						|
            calculateLevel(m_modSample);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            m_modSample.real(0.0f);
 | 
						|
            m_modSample.imag(0.0f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatNFM)
 | 
						|
    {
 | 
						|
        qint16 t;
 | 
						|
        readMonoSample(t);
 | 
						|
 | 
						|
        m_inMovingAverage.feed((t*t)/1073741824.0);
 | 
						|
        m_inMagsq = m_inMovingAverage.average();
 | 
						|
 | 
						|
        calculateSquelch(m_inMagsq);
 | 
						|
 | 
						|
        if (m_squelchOpen)
 | 
						|
        {
 | 
						|
            m_modPhasor += (m_settings.m_fmDeviation / m_settings.m_inputSampleRate) * (t / SDR_TX_SCALEF) * M_PI * 2.0f;
 | 
						|
            m_modSample.real(cos(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
 | 
						|
            m_modSample.imag(sin(m_modPhasor) * 0.3162292f * SDR_TX_SCALEF * m_settings.m_gainOut);
 | 
						|
            calculateLevel(m_modSample);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            m_modSample.real(0.0f);
 | 
						|
            m_modSample.imag(0.0f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (m_settings.m_sampleFormat == UDPSourceSettings::FormatAM)
 | 
						|
    {
 | 
						|
        qint16 t;
 | 
						|
        readMonoSample(t);
 | 
						|
        m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
 | 
						|
        m_inMagsq = m_inMovingAverage.average();
 | 
						|
 | 
						|
        calculateSquelch(m_inMagsq);
 | 
						|
 | 
						|
        if (m_squelchOpen)
 | 
						|
        {
 | 
						|
            m_modSample.real(((t / SDR_TX_SCALEF)*m_settings.m_amModFactor*m_settings.m_gainOut + 1.0f) * (SDR_TX_SCALEF/2)); // modulate and scale zero frequency carrier
 | 
						|
            m_modSample.imag(0.0f);
 | 
						|
            calculateLevel(m_modSample);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            m_modSample.real(0.0f);
 | 
						|
            m_modSample.imag(0.0f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if ((m_settings.m_sampleFormat == UDPSourceSettings::FormatLSB) || (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB))
 | 
						|
    {
 | 
						|
        qint16 t;
 | 
						|
        Complex c, ci;
 | 
						|
        fftfilt::cmplx *filtered;
 | 
						|
        int n_out = 0;
 | 
						|
 | 
						|
        readMonoSample(t);
 | 
						|
        m_inMovingAverage.feed((t*t)/(SDR_TX_SCALED*SDR_TX_SCALED));
 | 
						|
        m_inMagsq = m_inMovingAverage.average();
 | 
						|
 | 
						|
        calculateSquelch(m_inMagsq);
 | 
						|
 | 
						|
        if (m_squelchOpen)
 | 
						|
        {
 | 
						|
            ci.real((t / SDR_TX_SCALEF) * m_settings.m_gainOut);
 | 
						|
            ci.imag(0.0f);
 | 
						|
 | 
						|
            n_out = m_SSBFilter->runSSB(ci, &filtered, (m_settings.m_sampleFormat == UDPSourceSettings::FormatUSB));
 | 
						|
 | 
						|
            if (n_out > 0)
 | 
						|
            {
 | 
						|
                memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
 | 
						|
                m_SSBFilterBufferIndex = 0;
 | 
						|
            }
 | 
						|
 | 
						|
            c = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
 | 
						|
            m_modSample.real(m_SSBFilterBuffer[m_SSBFilterBufferIndex].real() * SDR_TX_SCALEF);
 | 
						|
            m_modSample.imag(m_SSBFilterBuffer[m_SSBFilterBufferIndex].imag() * SDR_TX_SCALEF);
 | 
						|
            m_SSBFilterBufferIndex++;
 | 
						|
 | 
						|
            calculateLevel(m_modSample);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            m_modSample.real(0.0f);
 | 
						|
            m_modSample.imag(0.0f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_modSample.real(0.0f);
 | 
						|
        m_modSample.imag(0.0f);
 | 
						|
        initSquelch(false);
 | 
						|
    }
 | 
						|
 | 
						|
    if (m_spectrumSink)
 | 
						|
    {
 | 
						|
        Sample s;
 | 
						|
        s.m_real = (FixReal) m_modSample.real();
 | 
						|
        s.m_imag = (FixReal) m_modSample.imag();
 | 
						|
        m_sampleBuffer.push_back(s);
 | 
						|
        m_spectrumChunkCounter++;
 | 
						|
 | 
						|
        if (m_spectrumChunkCounter == m_spectrumChunkSize)
 | 
						|
        {
 | 
						|
            m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), false);
 | 
						|
            m_sampleBuffer.clear();
 | 
						|
            m_spectrumChunkCounter = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::calculateLevel(Real sample)
 | 
						|
{
 | 
						|
    if (m_levelCalcCount < m_levelNbSamples)
 | 
						|
    {
 | 
						|
        m_peakLevel = std::max(std::fabs(m_peakLevel), sample);
 | 
						|
        m_levelSum += sample * sample;
 | 
						|
        m_levelCalcCount++;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_rmsLevel = m_levelSum > 0.0 ? sqrt(m_levelSum / m_levelNbSamples) : 0.0;
 | 
						|
        m_peakLevelOut = m_peakLevel;
 | 
						|
        m_peakLevel = 0.0f;
 | 
						|
        m_levelSum = 0.0f;
 | 
						|
        m_levelCalcCount = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::calculateLevel(Complex sample)
 | 
						|
{
 | 
						|
    Real t = std::abs(sample);
 | 
						|
 | 
						|
    if (m_levelCalcCount < m_levelNbSamples)
 | 
						|
    {
 | 
						|
        m_peakLevel = std::max(std::fabs(m_peakLevel), t);
 | 
						|
        m_levelSum += (t * t);
 | 
						|
        m_levelCalcCount++;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_rmsLevel = m_levelSum > 0.0 ? sqrt((m_levelSum/(SDR_TX_SCALED*SDR_TX_SCALED)) / m_levelNbSamples) : 0.0;
 | 
						|
        m_peakLevelOut = m_peakLevel;
 | 
						|
        m_peakLevel = 0.0f;
 | 
						|
        m_levelSum = 0.0f;
 | 
						|
        m_levelCalcCount = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::resetReadIndex()
 | 
						|
{
 | 
						|
    m_udpHandler.resetReadIndex();
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
 | 
						|
{
 | 
						|
    qDebug() << "UDPSourceSource::applyChannelSettings:"
 | 
						|
            << " channelSampleRate: " << channelSampleRate
 | 
						|
            << " channelFrequencyOffset: " << channelFrequencyOffset;
 | 
						|
 | 
						|
    if ((channelFrequencyOffset != m_channelFrequencyOffset) ||
 | 
						|
        (channelSampleRate != m_channelSampleRate) || force)
 | 
						|
    {
 | 
						|
        m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
 | 
						|
    }
 | 
						|
 | 
						|
    if (((channelSampleRate != m_channelSampleRate) && (!m_settings.m_autoRWBalance)) || force)
 | 
						|
    {
 | 
						|
        m_interpolatorDistanceRemain = 0;
 | 
						|
        m_interpolatorConsumed = false;
 | 
						|
        m_interpolatorDistance = (Real) m_settings.m_inputSampleRate / (Real) channelSampleRate;
 | 
						|
        m_interpolator.create(48, m_settings.m_inputSampleRate, m_settings.m_rfBandwidth / 2.2, 3.0);
 | 
						|
    }
 | 
						|
 | 
						|
    m_channelSampleRate = channelSampleRate;
 | 
						|
    m_channelFrequencyOffset = channelFrequencyOffset;
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::applySettings(const UDPSourceSettings& settings, bool force)
 | 
						|
{
 | 
						|
    qDebug() << "UDPSourceSource::applySettings:"
 | 
						|
            << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
 | 
						|
            << " m_sampleFormat: " << settings.m_sampleFormat
 | 
						|
            << " m_inputSampleRate: " << settings.m_inputSampleRate
 | 
						|
            << " m_rfBandwidth: " << settings.m_rfBandwidth
 | 
						|
            << " m_lowCutoff: " << settings.m_lowCutoff
 | 
						|
            << " m_fmDeviation: " << settings.m_fmDeviation
 | 
						|
            << " m_amModFactor: " << settings.m_amModFactor
 | 
						|
            << " m_udpAddressStr: " << settings.m_udpAddress
 | 
						|
            << " m_udpPort: " << settings.m_udpPort
 | 
						|
            << " m_multicastAddress: " << settings.m_multicastAddress
 | 
						|
            << " m_multicastJoin: " << settings.m_multicastJoin
 | 
						|
            << " m_channelMute: " << settings.m_channelMute
 | 
						|
            << " m_gainIn: " << settings.m_gainIn
 | 
						|
            << " m_gainOut: " << settings.m_gainOut
 | 
						|
            << " m_squelchGate: " << settings.m_squelchGate
 | 
						|
            << " m_squelch: " << settings.m_squelch << "dB"
 | 
						|
            << " m_squelchEnabled: " << settings.m_squelchEnabled
 | 
						|
            << " m_autoRWBalance: " << settings.m_autoRWBalance
 | 
						|
            << " m_stereoInput: " << settings.m_stereoInput
 | 
						|
            << " force: " << force;
 | 
						|
 | 
						|
    if((settings.m_rfBandwidth != m_settings.m_rfBandwidth) ||
 | 
						|
       (settings.m_lowCutoff != m_settings.m_lowCutoff) ||
 | 
						|
       (settings.m_inputSampleRate != m_settings.m_inputSampleRate) || force)
 | 
						|
    {
 | 
						|
        m_interpolatorDistanceRemain = 0;
 | 
						|
        m_interpolatorConsumed = false;
 | 
						|
        m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate;
 | 
						|
        m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
 | 
						|
        m_actualInputSampleRate = settings.m_inputSampleRate;
 | 
						|
        m_udpHandler.resetReadIndex();
 | 
						|
        m_sampleRateSum = 0.0;
 | 
						|
        m_sampleRateAvgCounter = 0;
 | 
						|
        m_spectrumChunkSize = settings.m_inputSampleRate * 0.05; // 50 ms chunk
 | 
						|
        m_spectrumChunkCounter = 0;
 | 
						|
        m_levelNbSamples = settings.m_inputSampleRate * 0.01; // every 10 ms
 | 
						|
        m_levelCalcCount = 0;
 | 
						|
        m_peakLevel = 0.0f;
 | 
						|
        m_levelSum = 0.0f;
 | 
						|
        m_udpHandler.resizeBuffer(settings.m_inputSampleRate);
 | 
						|
        m_inMovingAverage.resize(settings.m_inputSampleRate * 0.01, 1e-10); // 10 ms
 | 
						|
        m_squelchThreshold = settings.m_inputSampleRate * settings.m_squelchGate;
 | 
						|
        initSquelch(m_squelchOpen);
 | 
						|
        m_SSBFilter->create_filter(settings.m_lowCutoff / settings.m_inputSampleRate, settings.m_rfBandwidth / settings.m_inputSampleRate);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((settings.m_squelch != m_settings.m_squelch) || force)
 | 
						|
    {
 | 
						|
        m_squelch = CalcDb::powerFromdB(settings.m_squelch);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((settings.m_squelchGate != m_settings.m_squelchGate) || force)
 | 
						|
    {
 | 
						|
        m_squelchThreshold = m_channelSampleRate * settings.m_squelchGate;
 | 
						|
        initSquelch(m_squelchOpen);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((settings.m_udpAddress != m_settings.m_udpAddress) ||
 | 
						|
        (settings.m_udpPort != m_settings.m_udpPort) ||
 | 
						|
        (settings.m_multicastAddress != m_settings.m_multicastAddress) ||
 | 
						|
        (settings.m_multicastJoin != m_settings.m_multicastJoin) || force)
 | 
						|
    {
 | 
						|
        m_udpHandler.configureUDPLink(settings.m_udpAddress, settings.m_udpPort, settings.m_multicastAddress, settings.m_multicastJoin);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((settings.m_channelMute != m_settings.m_channelMute) || force)
 | 
						|
    {
 | 
						|
        if (!settings.m_channelMute) {
 | 
						|
            m_udpHandler.resetReadIndex();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if ((settings.m_autoRWBalance != m_settings.m_autoRWBalance) || force)
 | 
						|
    {
 | 
						|
        m_udpHandler.setAutoRWBalance(settings.m_autoRWBalance);
 | 
						|
 | 
						|
        if (!settings.m_autoRWBalance)
 | 
						|
        {
 | 
						|
            m_interpolatorDistanceRemain = 0;
 | 
						|
            m_interpolatorConsumed = false;
 | 
						|
            m_interpolatorDistance = (Real) settings.m_inputSampleRate / (Real) m_channelSampleRate;
 | 
						|
            m_interpolator.create(48, settings.m_inputSampleRate, settings.m_rfBandwidth / 2.2, 3.0);
 | 
						|
            m_actualInputSampleRate = settings.m_inputSampleRate;
 | 
						|
            m_udpHandler.resetReadIndex();
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    m_settings = settings;
 | 
						|
}
 | 
						|
 | 
						|
void UDPSourceSource::sampleRateCorrection(float rawDeltaRatio, float correctionFactor)
 | 
						|
{
 | 
						|
    float newSampleRate = m_actualInputSampleRate + correctionFactor * m_actualInputSampleRate;
 | 
						|
 | 
						|
    // exclude values too way out nominal sample rate (20%)
 | 
						|
    if ((newSampleRate < m_settings.m_inputSampleRate * 1.2) && (newSampleRate >  m_settings.m_inputSampleRate * 0.8))
 | 
						|
    {
 | 
						|
        m_actualInputSampleRate = newSampleRate;
 | 
						|
 | 
						|
        if ((rawDeltaRatio > -0.05) && (rawDeltaRatio < 0.05))
 | 
						|
        {
 | 
						|
            if (m_sampleRateAvgCounter < m_sampleRateAverageItems)
 | 
						|
            {
 | 
						|
                m_sampleRateSum += m_actualInputSampleRate;
 | 
						|
                m_sampleRateAvgCounter++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            m_sampleRateSum = 0.0;
 | 
						|
            m_sampleRateAvgCounter = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (m_sampleRateAvgCounter == m_sampleRateAverageItems)
 | 
						|
        {
 | 
						|
            float avgRate = m_sampleRateSum / m_sampleRateAverageItems;
 | 
						|
            qDebug("UDPSourceSource::sampleRateCorrection: corr: %+.6f new rate: %.0f: avg rate: %.0f",
 | 
						|
                    correctionFactor,
 | 
						|
                    m_actualInputSampleRate,
 | 
						|
                    avgRate);
 | 
						|
            m_actualInputSampleRate = avgRate;
 | 
						|
            m_sampleRateSum = 0.0;
 | 
						|
            m_sampleRateAvgCounter = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        m_interpolatorDistanceRemain = 0;
 | 
						|
        m_interpolatorConsumed = false;
 | 
						|
        m_interpolatorDistance = (Real) m_actualInputSampleRate / (Real) m_channelSampleRate;
 | 
						|
    }
 | 
						|
} |