mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			360 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			360 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2019 Edouard Griffiths, F4EXB                                   //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include <QTimer>
 | 
						|
#include <QDebug>
 | 
						|
 | 
						|
#include "dsp/samplemofifo.h"
 | 
						|
#include "dsp/basebandsamplesink.h"
 | 
						|
 | 
						|
#include "testmosyncsettings.h"
 | 
						|
#include "testmosyncworker.h"
 | 
						|
 | 
						|
TestMOSyncWorker::TestMOSyncWorker(QObject* parent) :
 | 
						|
    QObject(parent),
 | 
						|
    m_running(false),
 | 
						|
    m_buf(nullptr),
 | 
						|
    m_log2Interp(0),
 | 
						|
    m_throttlems(TestMOSyncSettings::m_msThrottle),
 | 
						|
    m_throttleToggle(false),
 | 
						|
    m_samplesRemainder(0),
 | 
						|
    m_samplerate(0),
 | 
						|
    m_feedSpectrumIndex(0),
 | 
						|
    m_spectrumSink(nullptr)
 | 
						|
{
 | 
						|
    qDebug("TestMOSyncWorker::TestMOSyncWorker");
 | 
						|
    setSamplerate(48000);
 | 
						|
}
 | 
						|
 | 
						|
TestMOSyncWorker::~TestMOSyncWorker()
 | 
						|
{
 | 
						|
    qDebug("TestMOSyncWorker::~TestMOSyncWorker");
 | 
						|
 | 
						|
    if (m_running) {
 | 
						|
        stopWork();
 | 
						|
    }
 | 
						|
 | 
						|
    delete[] m_buf;
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::startWork()
 | 
						|
{
 | 
						|
    qDebug("TestMOSyncWorker::startWork");
 | 
						|
    m_elapsedTimer.start();
 | 
						|
    m_running = true;
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::stopWork()
 | 
						|
{
 | 
						|
    qDebug("TestMOSyncWorker::stopWork");
 | 
						|
    m_running = false;
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::connectTimer(const QTimer& timer)
 | 
						|
{
 | 
						|
	qDebug() << "TestMOSyncWorker::connectTimer";
 | 
						|
	connect(&timer, SIGNAL(timeout()), this, SLOT(tick()));
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::setSamplerate(int samplerate)
 | 
						|
{
 | 
						|
	if (samplerate != m_samplerate)
 | 
						|
	{
 | 
						|
	    qDebug() << "TestMOSyncWorker::setSamplerate:"
 | 
						|
	            << " new:" << samplerate
 | 
						|
	            << " old:" << m_samplerate;
 | 
						|
 | 
						|
	    bool wasRunning = false;
 | 
						|
 | 
						|
		if (m_running)
 | 
						|
		{
 | 
						|
			stopWork();
 | 
						|
			wasRunning = true;
 | 
						|
		}
 | 
						|
 | 
						|
        m_samplerate = samplerate;
 | 
						|
        m_samplesChunkSize = (m_samplerate * m_throttlems) / 1000;
 | 
						|
        m_blockSize = (m_samplerate * 50) / 1000;
 | 
						|
 | 
						|
        if (m_buf) {
 | 
						|
            delete[] m_buf;
 | 
						|
        }
 | 
						|
 | 
						|
        m_buf = new qint16[2*m_blockSize*2];
 | 
						|
 | 
						|
        if (wasRunning) {
 | 
						|
            startWork();
 | 
						|
        }
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::setLog2Interpolation(unsigned int log2Interpolation)
 | 
						|
{
 | 
						|
    if (log2Interpolation > 6) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (log2Interpolation != m_log2Interp)
 | 
						|
    {
 | 
						|
        qDebug() << "TestSinkThread::setLog2Interpolation:"
 | 
						|
                << " new:" << log2Interpolation
 | 
						|
                << " old:" << m_log2Interp;
 | 
						|
 | 
						|
        bool wasRunning = false;
 | 
						|
 | 
						|
        if (m_running)
 | 
						|
        {
 | 
						|
            stopWork();
 | 
						|
            wasRunning = true;
 | 
						|
        }
 | 
						|
 | 
						|
        m_log2Interp = log2Interpolation;
 | 
						|
 | 
						|
        if (wasRunning) {
 | 
						|
            startWork();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
unsigned int TestMOSyncWorker::getLog2Interpolation() const
 | 
						|
{
 | 
						|
    return m_log2Interp;
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::setFcPos(int fcPos)
 | 
						|
{
 | 
						|
    m_fcPos = fcPos;
 | 
						|
}
 | 
						|
 | 
						|
int TestMOSyncWorker::getFcPos() const
 | 
						|
{
 | 
						|
    return m_fcPos;
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::callback(qint16* buf, qint32 samplesPerChannel)
 | 
						|
{
 | 
						|
    unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
 | 
						|
    m_sampleFifo->readSync(samplesPerChannel/(1<<m_log2Interp), iPart1Begin, iPart1End, iPart2Begin, iPart2End);
 | 
						|
 | 
						|
    if (iPart1Begin != iPart1End)
 | 
						|
    {
 | 
						|
        callbackPart(buf, (iPart1End - iPart1Begin)*(1<<m_log2Interp), iPart1Begin);
 | 
						|
    }
 | 
						|
 | 
						|
    if (iPart2Begin != iPart2End)
 | 
						|
    {
 | 
						|
        unsigned int shift = (iPart1End - iPart1Begin)*(1<<m_log2Interp);
 | 
						|
        callbackPart(buf + 2*shift, (iPart2End - iPart2Begin)*(1<<m_log2Interp), iPart2Begin);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
//  Interpolate according to specified log2 (ex: log2=4 => decim=16). len is a number of samples (not a number of I or Q)
 | 
						|
void TestMOSyncWorker::callbackPart(qint16* buf, qint32 nSamples, int iBegin)
 | 
						|
{
 | 
						|
    for (unsigned int channel = 0; channel < 2; channel++)
 | 
						|
    {
 | 
						|
        SampleVector::iterator begin = m_sampleFifo->getData(channel).begin() + iBegin;
 | 
						|
 | 
						|
        if (m_log2Interp == 0)
 | 
						|
        {
 | 
						|
            m_interpolators[channel].interpolate1(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            if (m_fcPos == 0) // Infra
 | 
						|
            {
 | 
						|
                switch (m_log2Interp)
 | 
						|
                {
 | 
						|
                case 1:
 | 
						|
                    m_interpolators[channel].interpolate2_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 2:
 | 
						|
                    m_interpolators[channel].interpolate4_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 3:
 | 
						|
                    m_interpolators[channel].interpolate8_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 4:
 | 
						|
                    m_interpolators[channel].interpolate16_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 5:
 | 
						|
                    m_interpolators[channel].interpolate32_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 6:
 | 
						|
                    m_interpolators[channel].interpolate64_inf(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else if (m_fcPos == 1) // Supra
 | 
						|
            {
 | 
						|
                switch (m_log2Interp)
 | 
						|
                {
 | 
						|
                case 1:
 | 
						|
                    m_interpolators[channel].interpolate2_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 2:
 | 
						|
                    m_interpolators[channel].interpolate4_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 3:
 | 
						|
                    m_interpolators[channel].interpolate8_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 4:
 | 
						|
                    m_interpolators[channel].interpolate16_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 5:
 | 
						|
                    m_interpolators[channel].interpolate32_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 6:
 | 
						|
                    m_interpolators[channel].interpolate64_sup(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else if (m_fcPos == 2) // Center
 | 
						|
            {
 | 
						|
                switch (m_log2Interp)
 | 
						|
                {
 | 
						|
                case 1:
 | 
						|
                    m_interpolators[channel].interpolate2_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 2:
 | 
						|
                    m_interpolators[channel].interpolate4_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 3:
 | 
						|
                    m_interpolators[channel].interpolate8_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 4:
 | 
						|
                    m_interpolators[channel].interpolate16_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 5:
 | 
						|
                    m_interpolators[channel].interpolate32_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                case 6:
 | 
						|
                    m_interpolators[channel].interpolate64_cen(&begin, &buf[channel*2*nSamples], 2*nSamples);
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (channel == m_feedSpectrumIndex) {
 | 
						|
            feedSpectrum(&buf[channel*2*nSamples], nSamples*2);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::tick()
 | 
						|
{
 | 
						|
	if (m_running)
 | 
						|
	{
 | 
						|
        qint64 throttlems = m_elapsedTimer.restart();
 | 
						|
 | 
						|
        if (throttlems != m_throttlems)
 | 
						|
        {
 | 
						|
            m_throttlems = throttlems;
 | 
						|
            m_samplesChunkSize = (m_samplerate * (m_throttlems+(m_throttleToggle ? 1 : 0))) / 1000;
 | 
						|
            m_throttleToggle = !m_throttleToggle;
 | 
						|
        }
 | 
						|
 | 
						|
        unsigned int iPart1Begin, iPart1End, iPart2Begin, iPart2End;
 | 
						|
        std::vector<SampleVector>& data = m_sampleFifo->getData();
 | 
						|
        m_sampleFifo->readSync(m_samplesChunkSize, iPart1Begin, iPart1End, iPart2Begin, iPart2End);
 | 
						|
 | 
						|
        if (iPart1Begin != iPart1End) {
 | 
						|
            callbackPart(data, iPart1Begin, iPart1End);
 | 
						|
        }
 | 
						|
 | 
						|
        if (iPart2Begin != iPart2End) {
 | 
						|
            callbackPart(data, iPart2Begin, iPart2End);
 | 
						|
        }
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::callbackPart(std::vector<SampleVector>& data, unsigned int iBegin, unsigned int iEnd)
 | 
						|
{
 | 
						|
    unsigned int chunkSize = iEnd - iBegin;
 | 
						|
 | 
						|
    for (unsigned int channel = 0; channel < 2; channel++)
 | 
						|
    {
 | 
						|
        SampleVector::iterator beginRead = data[channel].begin()  + iBegin;
 | 
						|
 | 
						|
        if (m_log2Interp == 0)
 | 
						|
        {
 | 
						|
            m_interpolators[channel].interpolate1(&beginRead, m_buf, 2*chunkSize);
 | 
						|
 | 
						|
            if (channel == m_feedSpectrumIndex) {
 | 
						|
                feedSpectrum(m_buf, 2*chunkSize);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            switch (m_log2Interp)
 | 
						|
            {
 | 
						|
            case 1:
 | 
						|
                m_interpolators[channel].interpolate2_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
 | 
						|
                break;
 | 
						|
            case 2:
 | 
						|
                m_interpolators[channel].interpolate4_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
 | 
						|
                break;
 | 
						|
            case 3:
 | 
						|
                m_interpolators[channel].interpolate8_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
 | 
						|
                break;
 | 
						|
            case 4:
 | 
						|
                m_interpolators[channel].interpolate16_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
 | 
						|
                break;
 | 
						|
            case 5:
 | 
						|
                m_interpolators[channel].interpolate32_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
 | 
						|
                break;
 | 
						|
            case 6:
 | 
						|
                m_interpolators[channel].interpolate64_cen(&beginRead, m_buf, chunkSize*(1<<m_log2Interp)*2);
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            if (channel == m_feedSpectrumIndex) {
 | 
						|
                feedSpectrum(m_buf, 2*chunkSize*(1<<m_log2Interp));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void TestMOSyncWorker::feedSpectrum(int16_t *buf, unsigned int bufSize)
 | 
						|
{
 | 
						|
    if (!m_spectrumSink) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    m_samplesVector.allocate(bufSize/2);
 | 
						|
    Sample16 *s16Buf = (Sample16*) buf;
 | 
						|
 | 
						|
    std::transform(
 | 
						|
        s16Buf,
 | 
						|
        s16Buf + (bufSize/2),
 | 
						|
        m_samplesVector.m_vector.begin(),
 | 
						|
        [](Sample16 s) -> Sample {
 | 
						|
            return Sample{s.m_real, s.m_imag};
 | 
						|
        }
 | 
						|
    );
 | 
						|
 | 
						|
    m_spectrumSink->feed(m_samplesVector.m_vector.begin(), m_samplesVector.m_vector.begin() + (bufSize/2), false);
 | 
						|
}
 |