mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 13:00:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			342 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com>               //
 | |
| //                                                                               //
 | |
| // This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon          //
 | |
| // reformatted and adapted to Qt and SDRangel context                            //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| #include <math.h>
 | |
| #include <complex>
 | |
| #include <string>
 | |
| #include <algorithm>
 | |
| 
 | |
| #include "util/timeutil.h"
 | |
| #include "util.h"
 | |
| 
 | |
| namespace FT8 {
 | |
| 
 | |
| double now()
 | |
| {
 | |
|     return TimeUtil::nowus() / 1000000.0;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Goertzel Algorithm for a Non-integer Frequency Index, Rick Lyons
 | |
| // https://www.dsprelated.com/showarticle/495.php
 | |
| //
 | |
| std::complex<float> goertzel(std::vector<float> v, int rate, int i0, int n, float hz)
 | |
| {
 | |
|     // float radians_per_sample = (hz * 2 * M_PI) / rate;
 | |
|     // float k = radians_per_sample * n;
 | |
|     float bin_hz = rate / (float)n;
 | |
|     float k = hz / bin_hz;
 | |
| 
 | |
|     float alpha = 2 * M_PI * k / n;
 | |
|     float beta = 2 * M_PI * k * (n - 1.0) / n;
 | |
| 
 | |
|     float two_cos_alpha = 2 * cos(alpha);
 | |
|     float a = cos(beta);
 | |
|     float b = -sin(beta);
 | |
|     float c = sin(alpha) * sin(beta) - cos(alpha) * cos(beta);
 | |
|     float d = sin(2 * M_PI * k);
 | |
| 
 | |
|     float w1 = 0;
 | |
|     float w2 = 0;
 | |
| 
 | |
|     for (int i = 0; i < n; i++)
 | |
|     {
 | |
|         float w0 = v[i0 + i] + two_cos_alpha * w1 - w2;
 | |
|         w2 = w1;
 | |
|         w1 = w0;
 | |
|     }
 | |
| 
 | |
|     float re = w1 * a + w2 * c;
 | |
|     float im = w1 * b + w2 * d;
 | |
| 
 | |
|     return std::complex<float>(re, im);
 | |
| }
 | |
| 
 | |
| float vmax(const std::vector<float> &v)
 | |
| {
 | |
|     float mx = 0;
 | |
|     int got = 0;
 | |
|     for (int i = 0; i < (int)v.size(); i++)
 | |
|     {
 | |
|         if (got == 0 || v[i] > mx)
 | |
|         {
 | |
|             got = 1;
 | |
|             mx = v[i];
 | |
|         }
 | |
|     }
 | |
|     return mx;
 | |
| }
 | |
| 
 | |
| std::vector<float> vreal(const std::vector<std::complex<float>> &a)
 | |
| {
 | |
|     std::vector<float> b(a.size());
 | |
|     for (int i = 0; i < (int)a.size(); i++)
 | |
|     {
 | |
|         b[i] = a[i].real();
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| std::vector<float> vimag(const std::vector<std::complex<float>> &a)
 | |
| {
 | |
|     std::vector<float> b(a.size());
 | |
|     for (int i = 0; i < (int)a.size(); i++)
 | |
|     {
 | |
|         b[i] = a[i].imag();
 | |
|     }
 | |
|     return b;
 | |
| }
 | |
| 
 | |
| // generate 8-FSK, at 25 hz, bin size 6.25 hz,
 | |
| // 200 samples/second, 32 samples/symbol.
 | |
| // used as reference to detect pairs of symbols.
 | |
| // superseded by gfsk().
 | |
| std::vector<std::complex<float>> fsk_c(const std::vector<int> &syms)
 | |
| {
 | |
|     int n = syms.size();
 | |
|     std::vector<std::complex<float>> v(n * 32);
 | |
|     float theta = 0;
 | |
|     for (int si = 0; si < n; si++)
 | |
|     {
 | |
|         float hz = 25 + syms[si] * 6.25;
 | |
|         for (int i = 0; i < 32; i++)
 | |
|         {
 | |
|             v[si * 32 + i] = std::complex<float>(cos(theta), sin(theta));
 | |
|             theta += 2 * M_PI / (200 / hz);
 | |
|         }
 | |
|     }
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| // copied from wsjt-x ft2/gfsk_pulse.f90.
 | |
| // b is 1.0 for FT4; 2.0 for FT8.
 | |
| float gfsk_point(float b, float t)
 | |
| {
 | |
|     float c = M_PI * sqrt(2.0 / log(2.0));
 | |
|     float x = 0.5 * (erf(c * b * (t + 0.5)) - erf(c * b * (t - 0.5)));
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| // the smoothing window for gfsk.
 | |
| // run the window over impulses of symbol frequencies,
 | |
| // each impulse at the center of its symbol time.
 | |
| // three symbols wide.
 | |
| // most of the pulse is in the center symbol.
 | |
| // b is 1.0 for FT4; 2.0 for FT8.
 | |
| std::vector<float> gfsk_window(int samples_per_symbol, float b)
 | |
| {
 | |
|     std::vector<float> v(3 * samples_per_symbol);
 | |
|     float sum = 0;
 | |
|     for (int i = 0; i < (int)v.size(); i++)
 | |
|     {
 | |
|         float x = i / (float)samples_per_symbol;
 | |
|         x -= 1.5;
 | |
|         float y = gfsk_point(b, x);
 | |
|         v[i] = y;
 | |
|         sum += y;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < (int)v.size(); i++)
 | |
|     {
 | |
|         v[i] /= sum;
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| // gaussian-smoothed fsk.
 | |
| // the gaussian smooths the instantaneous frequencies,
 | |
| // so that the transitions between symbols don't
 | |
| // cause clicks.
 | |
| // gwin is gfsk_window(32, 2.0)
 | |
| std::vector<std::complex<float>> gfsk_c(
 | |
|     const std::vector<int> &symbols,
 | |
|     float hz0, float hz1,
 | |
|     float spacing, int rate, int symsamples,
 | |
|     float phase0,
 | |
|     const std::vector<float> &gwin
 | |
| )
 | |
| {
 | |
|     if (!((gwin.size() % 2) == 0))
 | |
|     {
 | |
|         std::vector<std::complex<float>> v(symsamples * symbols.size());
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     // compute frequency for each symbol.
 | |
|     // generate a spike in the middle of each symbol time;
 | |
|     // the gaussian filter will turn it into a waveform.
 | |
|     std::vector<float> hzv(symsamples * (symbols.size() + 2), 0.0);
 | |
|     for (int bi = 0; bi < (int)symbols.size(); bi++)
 | |
|     {
 | |
|         float base_hz = hz0 + (hz1 - hz0) * (bi / (float)symbols.size());
 | |
|         float fr = base_hz + (symbols[bi] * spacing);
 | |
|         int mid = symsamples * (bi + 1) + symsamples / 2;
 | |
|         // the window has even size, so split the impulse over
 | |
|         // the two middle samples to be symmetric.
 | |
|         hzv[mid] = fr * symsamples / 2.0;
 | |
|         hzv[mid - 1] = fr * symsamples / 2.0;
 | |
|     }
 | |
| 
 | |
|     // repeat first and last symbols
 | |
|     for (int i = 0; i < symsamples; i++)
 | |
|     {
 | |
|         hzv[i] = hzv[i + symsamples];
 | |
|         hzv[symsamples * (symbols.size() + 1) + i] = hzv[symsamples * symbols.size() + i];
 | |
|     }
 | |
| 
 | |
|     // run the per-sample frequency vector through
 | |
|     // the gaussian filter.
 | |
|     int half = gwin.size() / 2;
 | |
|     std::vector<float> o(hzv.size());
 | |
|     for (int i = 0; i < (int)o.size(); i++)
 | |
|     {
 | |
|         float sum = 0;
 | |
|         for (int j = 0; j < (int)gwin.size(); j++)
 | |
|         {
 | |
|             int k = i - half + j;
 | |
|             if (k >= 0 && k < (int)hzv.size())
 | |
|             {
 | |
|                 sum += hzv[k] * gwin[j];
 | |
|             }
 | |
|         }
 | |
|         o[i] = sum;
 | |
|     }
 | |
| 
 | |
|     // drop repeated first and last symbols
 | |
|     std::vector<float> oo(symsamples * symbols.size());
 | |
|     for (int i = 0; i < (int)oo.size(); i++)
 | |
|     {
 | |
|         oo[i] = o[i + symsamples];
 | |
|     }
 | |
| 
 | |
|     // now oo[i] contains the frequency for the i'th sample.
 | |
| 
 | |
|     std::vector<std::complex<float>> v(symsamples * symbols.size());
 | |
|     float theta = phase0;
 | |
|     for (int i = 0; i < (int)v.size(); i++)
 | |
|     {
 | |
|         v[i] = std::complex<float>(cos(theta), sin(theta));
 | |
|         float hz = oo[i];
 | |
|         theta += 2 * M_PI / (rate / hz);
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| // gaussian-smoothed fsk.
 | |
| // the gaussian smooths the instantaneous frequencies,
 | |
| // so that the transitions between symbols don't
 | |
| // cause clicks.
 | |
| // gwin is gfsk_window(32, 2.0)
 | |
| std::vector<float> gfsk_r(
 | |
|     const std::vector<int> &symbols,
 | |
|     float hz0, float hz1,
 | |
|     float spacing, int rate, int symsamples,
 | |
|     float phase0,
 | |
|     const std::vector<float> &gwin
 | |
| )
 | |
| {
 | |
|     if (!((gwin.size() % 2) == 0))
 | |
|     {
 | |
|         std::vector<float> v(symsamples * symbols.size());
 | |
|         return v;
 | |
|     }
 | |
| 
 | |
|     // compute frequency for each symbol.
 | |
|     // generate a spike in the middle of each symbol time;
 | |
|     // the gaussian filter will turn it into a waveform.
 | |
|     std::vector<float> hzv(symsamples * (symbols.size() + 2), 0.0);
 | |
|     for (int bi = 0; bi < (int)symbols.size(); bi++)
 | |
|     {
 | |
|         float base_hz = hz0 + (hz1 - hz0) * (bi / (float)symbols.size());
 | |
|         float fr = base_hz + (symbols[bi] * spacing);
 | |
|         int mid = symsamples * (bi + 1) + symsamples / 2;
 | |
|         // the window has even size, so split the impulse over
 | |
|         // the two middle samples to be symmetric.
 | |
|         hzv[mid] = fr * symsamples / 2.0;
 | |
|         hzv[mid - 1] = fr * symsamples / 2.0;
 | |
|     }
 | |
| 
 | |
|     // repeat first and last symbols
 | |
|     for (int i = 0; i < symsamples; i++)
 | |
|     {
 | |
|         hzv[i] = hzv[i + symsamples];
 | |
|         hzv[symsamples * (symbols.size() + 1) + i] = hzv[symsamples * symbols.size() + i];
 | |
|     }
 | |
| 
 | |
|     // run the per-sample frequency vector through
 | |
|     // the gaussian filter.
 | |
|     int half = gwin.size() / 2;
 | |
|     std::vector<float> o(hzv.size());
 | |
|     for (int i = 0; i < (int)o.size(); i++)
 | |
|     {
 | |
|         float sum = 0;
 | |
|         for (int j = 0; j < (int)gwin.size(); j++)
 | |
|         {
 | |
|             int k = i - half + j;
 | |
|             if (k >= 0 && k < (int)hzv.size())
 | |
|             {
 | |
|                 sum += hzv[k] * gwin[j];
 | |
|             }
 | |
|         }
 | |
|         o[i] = sum;
 | |
|     }
 | |
| 
 | |
|     // drop repeated first and last symbols
 | |
|     std::vector<float> oo(symsamples * symbols.size());
 | |
|     for (int i = 0; i < (int)oo.size(); i++)
 | |
|     {
 | |
|         oo[i] = o[i + symsamples];
 | |
|     }
 | |
| 
 | |
|     // now oo[i] contains the frequency for the i'th sample.
 | |
| 
 | |
|     std::vector<float> v(symsamples * symbols.size());
 | |
|     float theta = phase0;
 | |
|     for (int i = 0; i < (int)v.size(); i++)
 | |
|     {
 | |
|         v[i] = cos(theta);
 | |
|         float hz = oo[i];
 | |
|         theta += 2 * M_PI / (rate / hz);
 | |
|     }
 | |
| 
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| const std::string WHITESPACE = " \n\r\t\f\v";
 | |
| 
 | |
| std::string ltrim(const std::string &s)
 | |
| {
 | |
|     size_t start = s.find_first_not_of(WHITESPACE);
 | |
|     return (start == std::string::npos) ? "" : s.substr(start);
 | |
| }
 | |
| 
 | |
| std::string rtrim(const std::string &s)
 | |
| {
 | |
|     size_t end = s.find_last_not_of(WHITESPACE);
 | |
|     return (end == std::string::npos) ? "" : s.substr(0, end + 1);
 | |
| }
 | |
| 
 | |
| std::string trim(const std::string &s) {
 | |
|     return rtrim(ltrim(s));
 | |
| }
 | |
| 
 | |
| } // namespace FT8
 |