mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 13:00:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2024 Edouard Griffiths, F4EXB <f4exb06@gmail.com>               //
 | |
| //                                                                               //
 | |
| // This is the code from ft8mon: https://github.com/rtmrtmrtmrtm/ft8mon          //
 | |
| // reformatted and adapted to Qt and SDRangel context                            //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <math.h>
 | |
| #include <algorithm>
 | |
| 
 | |
| #include "ft8stats.h"
 | |
| 
 | |
| namespace FT8 {
 | |
| 
 | |
| Stats::Stats(int how, float log_tail, float log_rate) :
 | |
|     sum_(0),
 | |
|     finalized_(false),
 | |
|     how_(how),
 | |
|     log_tail_(log_tail),
 | |
|     log_rate_(log_rate)
 | |
| {}
 | |
| 
 | |
| void Stats::add(float x)
 | |
| {
 | |
|     a_.push_back(x);
 | |
|     sum_ += x;
 | |
|     finalized_ = false;
 | |
| }
 | |
| 
 | |
| void Stats::finalize()
 | |
| {
 | |
|     finalized_ = true;
 | |
| 
 | |
|     int n = a_.size();
 | |
|     mean_ = sum_ / n;
 | |
|     float var = 0;
 | |
|     float bsum = 0;
 | |
| 
 | |
|     for (int i = 0; i < n; i++)
 | |
|     {
 | |
|         float y = a_[i] - mean_;
 | |
|         var += y * y;
 | |
|         bsum += fabs(y);
 | |
|     }
 | |
| 
 | |
|     var /= n;
 | |
|     stddev_ = sqrt(var);
 | |
|     b_ = bsum / n;
 | |
| 
 | |
|     // prepare for binary search to find where values lie
 | |
|     // in the distribution.
 | |
|     if (how_ != 0 && how_ != 5) {
 | |
|         std::sort(a_.begin(), a_.end());
 | |
|     }
 | |
| }
 | |
| 
 | |
| float Stats::mean()
 | |
| {
 | |
|     if (!finalized_) {
 | |
|         finalize();
 | |
|     }
 | |
| 
 | |
|     return mean_;
 | |
| }
 | |
| 
 | |
| float Stats::stddev()
 | |
| {
 | |
|     if (!finalized_) {
 | |
|         finalize();
 | |
|     }
 | |
| 
 | |
|     return stddev_;
 | |
| }
 | |
| 
 | |
| // fraction of distribution that's less than x.
 | |
| // assumes normal distribution.
 | |
| // this is PHI(x), or the CDF at x,
 | |
| // or the integral from -infinity
 | |
| // to x of the PDF.
 | |
| float Stats::gaussian_problt(float x)
 | |
| {
 | |
|     float SDs = (x - mean()) / stddev();
 | |
|     float frac = 0.5 * (1.0 + erf(SDs / sqrt(2.0)));
 | |
|     return frac;
 | |
| }
 | |
| 
 | |
| // https://en.wikipedia.org/wiki/Laplace_distribution
 | |
| // m and b from page 116 of Mark Owen's Practical Signal Processing.
 | |
| float Stats::laplace_problt(float x)
 | |
| {
 | |
|     float m = mean();
 | |
|     float cdf;
 | |
| 
 | |
|     if (x < m) {
 | |
|         cdf = 0.5 * exp((x - m) / b_);
 | |
|     } else {
 | |
|         cdf = 1.0 - 0.5 * exp(-(x - m) / b_);
 | |
|     }
 | |
| 
 | |
|     return cdf;
 | |
| }
 | |
| 
 | |
| // look into the actual distribution.
 | |
| float Stats::problt(float x)
 | |
| {
 | |
|     if (!finalized_) {
 | |
|         finalize();
 | |
|     }
 | |
| 
 | |
|     if (how_ == 0) {
 | |
|         return gaussian_problt(x);
 | |
|     }
 | |
| 
 | |
|     if (how_ == 5) {
 | |
|         return laplace_problt(x);
 | |
|     }
 | |
| 
 | |
|     // binary search.
 | |
|     auto it = std::lower_bound(a_.begin(), a_.end(), x);
 | |
|     int i = it - a_.begin();
 | |
|     int n = a_.size();
 | |
| 
 | |
|     if (how_ == 1)
 | |
|     {
 | |
|         // index into the distribution.
 | |
|         // works poorly for values that are off the ends
 | |
|         // of the distribution, since those are all
 | |
|         // mapped to 0.0 or 1.0, regardless of magnitude.
 | |
|         return i / (float)n;
 | |
|     }
 | |
| 
 | |
|     if (how_ == 2)
 | |
|     {
 | |
|         // use a kind of logistic regression for
 | |
|         // values near the edges of the distribution.
 | |
|         if (i < log_tail_ * n)
 | |
|         {
 | |
|             float x0 = a_[(int)(log_tail_ * n)];
 | |
|             float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
 | |
|             // y is 0..0.5
 | |
|             y /= 5;
 | |
|             return y;
 | |
|         }
 | |
|         else if (i > (1 - log_tail_) * n)
 | |
|         {
 | |
|             float x0 = a_[(int)((1 - log_tail_) * n)];
 | |
|             float y = 1.0 / (1.0 + exp(-log_rate_ * (x - x0)));
 | |
|             // y is 0.5..1
 | |
|             // we want (1-log_tail)..1
 | |
|             y -= 0.5;
 | |
|             y *= 2;
 | |
|             y *= log_tail_;
 | |
|             y += (1 - log_tail_);
 | |
|             return y;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             return i / (float)n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (how_ == 3)
 | |
|     {
 | |
|         // gaussian for values near the edge of the distribution.
 | |
|         if (i < log_tail_ * n) {
 | |
|             return gaussian_problt(x);
 | |
|         } else if (i > (1 - log_tail_) * n) {
 | |
|             return gaussian_problt(x);
 | |
|         } else {
 | |
|             return i / (float)n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (how_ == 4)
 | |
|     {
 | |
|         // gaussian for values outside the distribution.
 | |
|         if (x < a_[0] || x > a_.back()) {
 | |
|             return gaussian_problt(x);
 | |
|         } else {
 | |
|             return i / (float)n;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| } // namespace FT8
 |