mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-04 05:30:32 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			352 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			352 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2016-2019, 2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com>    //
 | 
						|
// Copyright (C) 2023 Jon Beniston, M7RCE <jon@beniston.com>                     //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include <array>
 | 
						|
 | 
						|
#include <QString>
 | 
						|
#include <QDebug>
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
#include "hbfilterchainconverter.h"
 | 
						|
#include "upchannelizer.h"
 | 
						|
 | 
						|
UpChannelizer::UpChannelizer(ChannelSampleSource* sampleSource) :
 | 
						|
    m_filterChainSetMode(false),
 | 
						|
    m_sampleSource(sampleSource),
 | 
						|
    m_basebandSampleRate(0),
 | 
						|
    m_requestedInputSampleRate(0),
 | 
						|
    m_requestedCenterFrequency(0),
 | 
						|
    m_channelSampleRate(0),
 | 
						|
    m_channelFrequencyOffset(0),
 | 
						|
    m_log2Interp(0),
 | 
						|
    m_filterChainHash(0)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
UpChannelizer::~UpChannelizer()
 | 
						|
{
 | 
						|
    freeFilterChain();
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::pullOne(Sample& sample)
 | 
						|
{
 | 
						|
    if (m_sampleSource == nullptr)
 | 
						|
    {
 | 
						|
        m_sampleBuffer.clear();
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned int log2Interp = m_filterStages.size();
 | 
						|
 | 
						|
    if (log2Interp == 0) // optimization when no downsampling is done anyway
 | 
						|
    {
 | 
						|
        m_sampleSource->pullOne(sample);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        FilterStages::iterator stage = m_filterStages.begin();
 | 
						|
        std::vector<Sample>::iterator stageSample = m_stageSamples.begin();
 | 
						|
 | 
						|
        for (; stage != m_filterStages.end(); ++stage, ++stageSample)
 | 
						|
        {
 | 
						|
            if(stage == m_filterStages.end() - 1)
 | 
						|
            {
 | 
						|
                if ((*stage)->work(&m_sampleIn, &(*stageSample)))
 | 
						|
                {
 | 
						|
                    m_sampleSource->pullOne(m_sampleIn); // get new input sample
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                if (!(*stage)->work(&(*(stageSample+1)), &(*stageSample)))
 | 
						|
                {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        sample = *m_stageSamples.begin();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::pull(SampleVector::iterator begin, unsigned int nbSamples)
 | 
						|
{
 | 
						|
    if (m_sampleSource == nullptr)
 | 
						|
    {
 | 
						|
        m_sampleBuffer.clear();
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned int log2Interp = m_filterStages.size();
 | 
						|
 | 
						|
    if (log2Interp == 0) // optimization when no downsampling is done anyway
 | 
						|
    {
 | 
						|
        m_sampleSource->pull(begin, nbSamples);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        std::for_each(
 | 
						|
            begin,
 | 
						|
            begin + nbSamples,
 | 
						|
            [this](Sample& s) {
 | 
						|
                pullOne(s);
 | 
						|
            }
 | 
						|
        );
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::prefetch(unsigned int nbSamples)
 | 
						|
{
 | 
						|
    unsigned int log2Interp = m_filterStages.size();
 | 
						|
    m_sampleSource->prefetch(nbSamples/(1<<log2Interp)); // 2^n less samples will be produced by the source
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::setChannelization(int requestedSampleRate, qint64 requestedCenterFrequency)
 | 
						|
{
 | 
						|
    m_requestedInputSampleRate = requestedSampleRate;
 | 
						|
    m_requestedCenterFrequency = requestedCenterFrequency;
 | 
						|
    applyChannelization();
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::setBasebandSampleRate(int basebandSampleRate, bool interp)
 | 
						|
{
 | 
						|
    m_basebandSampleRate = basebandSampleRate;
 | 
						|
 | 
						|
    if (interp) {
 | 
						|
        applyInterpolation();
 | 
						|
    } else {
 | 
						|
        applyChannelization();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::applyChannelization()
 | 
						|
{
 | 
						|
    m_filterChainSetMode = false;
 | 
						|
 | 
						|
    if (m_basebandSampleRate == 0)
 | 
						|
    {
 | 
						|
        qDebug() << "UpChannelizer::applyConfiguration: aborting (out=0):"
 | 
						|
                << " out:" << m_basebandSampleRate
 | 
						|
                << " req:" << m_requestedInputSampleRate
 | 
						|
                << " in:" << m_channelSampleRate
 | 
						|
                << " fc:" << m_channelFrequencyOffset;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    freeFilterChain();
 | 
						|
 | 
						|
    m_channelFrequencyOffset = createFilterChain(
 | 
						|
        m_basebandSampleRate / -2, m_basebandSampleRate / 2,
 | 
						|
        m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2);
 | 
						|
 | 
						|
    m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size());
 | 
						|
 | 
						|
    qDebug() << "UpChannelizer::applyConfiguration: done: "
 | 
						|
            << " out:" << m_basebandSampleRate
 | 
						|
            << " req:" << m_requestedInputSampleRate
 | 
						|
            << " in:" << m_channelSampleRate
 | 
						|
            << " fc:" << m_channelFrequencyOffset;
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::setInterpolation(unsigned int log2Interp, unsigned int filterChainHash)
 | 
						|
{
 | 
						|
    m_log2Interp = log2Interp;
 | 
						|
    m_filterChainHash = filterChainHash;
 | 
						|
    applyInterpolation();
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::applyInterpolation()
 | 
						|
{
 | 
						|
    m_filterChainSetMode = true;
 | 
						|
    std::vector<unsigned int> stageIndexes;
 | 
						|
    m_channelFrequencyOffset = m_basebandSampleRate * HBFilterChainConverter::convertToIndexes(m_log2Interp, m_filterChainHash, stageIndexes);
 | 
						|
    m_requestedCenterFrequency = m_channelFrequencyOffset;
 | 
						|
 | 
						|
    freeFilterChain();
 | 
						|
 | 
						|
    m_channelFrequencyOffset = m_basebandSampleRate * setFilterChain(stageIndexes);
 | 
						|
    m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size());
 | 
						|
    m_requestedInputSampleRate = m_channelSampleRate;
 | 
						|
 | 
						|
	qDebug() << "UpChannelizer::applyInterpolation:"
 | 
						|
            << " m_log2Interp:" << m_log2Interp
 | 
						|
            << " m_filterChainHash:" << m_filterChainHash
 | 
						|
            << " out:" << m_basebandSampleRate
 | 
						|
			<< " in:" << m_channelSampleRate
 | 
						|
			<< " fc:" << m_channelFrequencyOffset;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef USE_SSE4_1
 | 
						|
UpChannelizer::FilterStage::FilterStage(Mode mode) :
 | 
						|
    m_filter(new IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>),
 | 
						|
    m_workFunction(0)
 | 
						|
{
 | 
						|
    switch(mode) {
 | 
						|
        case ModeCenter:
 | 
						|
            m_workFunction = &IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ModeLowerHalf:
 | 
						|
            m_workFunction = &IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ModeUpperHalf:
 | 
						|
            m_workFunction = &IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
}
 | 
						|
#else
 | 
						|
UpChannelizer::FilterStage::FilterStage(Mode mode) :
 | 
						|
    m_filter(new IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>),
 | 
						|
    m_workFunction(0)
 | 
						|
{
 | 
						|
    switch(mode) {
 | 
						|
        case ModeCenter:
 | 
						|
            m_workFunction = &IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ModeLowerHalf:
 | 
						|
            m_workFunction = &IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
 | 
						|
            break;
 | 
						|
 | 
						|
        case ModeUpperHalf:
 | 
						|
            m_workFunction = &IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
 | 
						|
            break;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
UpChannelizer::FilterStage::~FilterStage()
 | 
						|
{
 | 
						|
    delete m_filter;
 | 
						|
}
 | 
						|
 | 
						|
Real UpChannelizer::channelMinSpace(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
 | 
						|
{
 | 
						|
    Real leftSpace = chanStart - sigStart;
 | 
						|
    Real rightSpace = sigEnd - chanEnd;
 | 
						|
    return std::min(leftSpace, rightSpace);
 | 
						|
}
 | 
						|
 | 
						|
Real UpChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
 | 
						|
{
 | 
						|
    Real sigBw = sigEnd - sigStart;
 | 
						|
    Real chanBw = chanEnd - chanStart;
 | 
						|
    Real rot = sigBw / 4;
 | 
						|
    Sample s;
 | 
						|
 | 
						|
    std::array<Real, 3> filterMinSpaces; // Array of left, center and right filter min spaces respectively
 | 
						|
    filterMinSpaces[0] = channelMinSpace(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
 | 
						|
    filterMinSpaces[1] = channelMinSpace(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
 | 
						|
    filterMinSpaces[2] = channelMinSpace(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
 | 
						|
    auto maxIt = std::max_element(filterMinSpaces.begin(), filterMinSpaces.end());
 | 
						|
    int maxIndex = maxIt - filterMinSpaces.begin();
 | 
						|
    Real maxValue = *maxIt;
 | 
						|
 | 
						|
	qDebug("UpChannelizer::createFilterChain: Signal [%.1f, %.1f] (BW %.1f) Channel [%.1f, %.1f] (BW %.1f) Selected: %d (fit %.1f)",
 | 
						|
        sigStart, sigEnd, sigBw, chanStart, chanEnd, chanBw, maxIndex, maxValue);
 | 
						|
 | 
						|
    if ((sigStart < sigEnd) && (chanStart < chanEnd) && (maxValue >= chanBw/8.0))
 | 
						|
    {
 | 
						|
        if (maxIndex == 0)
 | 
						|
        {
 | 
						|
            m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
 | 
						|
            m_stageSamples.push_back(s);
 | 
						|
            return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
 | 
						|
        }
 | 
						|
 | 
						|
        if (maxIndex == 1)
 | 
						|
        {
 | 
						|
            m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
 | 
						|
            m_stageSamples.push_back(s);
 | 
						|
            return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
 | 
						|
        }
 | 
						|
 | 
						|
        if (maxIndex == 2)
 | 
						|
        {
 | 
						|
            m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
 | 
						|
            m_stageSamples.push_back(s);
 | 
						|
            return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
 | 
						|
 | 
						|
    qDebug() << "UpChannelizer::createFilterChain: complete:"
 | 
						|
            << " #stages: " << m_filterStages.size()
 | 
						|
            << " BW: "  << sigBw
 | 
						|
            << " ofs: " << ofs;
 | 
						|
 | 
						|
    return ofs;
 | 
						|
}
 | 
						|
 | 
						|
double UpChannelizer::setFilterChain(const std::vector<unsigned int>& stageIndexes)
 | 
						|
{
 | 
						|
    // filters are described from lower to upper level but the chain is constructed the other way round
 | 
						|
    std::vector<unsigned int>::const_reverse_iterator rit = stageIndexes.rbegin();
 | 
						|
    double ofs = 0.0, ofs_stage = 0.25;
 | 
						|
    Sample s;
 | 
						|
 | 
						|
    // Each index is a base 3 number with 0 = low, 1 = center, 2 = high
 | 
						|
    // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting
 | 
						|
    // algorithms will go from LSD to MSD. This explains the reverse order.
 | 
						|
    for (; rit != stageIndexes.rend(); ++rit)
 | 
						|
    {
 | 
						|
        if (*rit == 0)
 | 
						|
        {
 | 
						|
            m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
 | 
						|
            m_stageSamples.push_back(s);
 | 
						|
            ofs -= ofs_stage;
 | 
						|
            qDebug("UpChannelizer::setFilterChain: lower half: ofs: %f", ofs);
 | 
						|
        }
 | 
						|
        else if (*rit == 1)
 | 
						|
        {
 | 
						|
            m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
 | 
						|
            m_stageSamples.push_back(s);
 | 
						|
            qDebug("UpChannelizer::setFilterChain: center: ofs: %f", ofs);
 | 
						|
        }
 | 
						|
        else if (*rit == 2)
 | 
						|
        {
 | 
						|
            m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
 | 
						|
            m_stageSamples.push_back(s);
 | 
						|
            ofs += ofs_stage;
 | 
						|
            qDebug("UpChannelizer::setFilterChain: upper half: ofs: %f", ofs);
 | 
						|
        }
 | 
						|
 | 
						|
        ofs_stage /= 2;
 | 
						|
    }
 | 
						|
 | 
						|
    qDebug() << "UpChannelizer::setFilterChain: complete:"
 | 
						|
            << " #stages: " << m_filterStages.size()
 | 
						|
            << " ofs: " << ofs;
 | 
						|
 | 
						|
    return ofs;
 | 
						|
}
 | 
						|
 | 
						|
void UpChannelizer::freeFilterChain()
 | 
						|
{
 | 
						|
    for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
 | 
						|
        delete *it;
 | 
						|
    m_filterStages.clear();
 | 
						|
    m_stageSamples.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 |